淡江大學機構典藏:Item 987654321/98518
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 9828319      在线人数 : 18085
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/98518


    题名: Adaptive functional-link-based neural fuzzy controller design for a DC gear motor driver
    作者: Hsu, Chun-Fei
    贡献者: 淡江大學電機工程學系
    关键词: Adaptive control;Neural control;DC Gear motor;Functional link;Neural fuzzy system
    日期: 2013-12-01
    上传时间: 2014-08-11 15:54:51 (UTC+8)
    出版者: London: Springer U K
    摘要: This paper proposes an adaptive functional-link-based neural fuzzy control (AFNFC) system based on complementary sliding-mode approach. The proposed AFNFC system is composed of a neural controller and a robust compensator. The neural controller uses a functional-link-based neural fuzzy system (FNFS) to approximate an ideal complementary sliding-mode controller, and the robust compensator is designed to eliminate the effect of the approximation error between a neural controller and an ideal complementary sliding-mode controller. Since the consequent part of the fuzzy rules in FNFS uses an orthogonal Hermite polynomial-based non-linear combination, the proposed FNFS can approximate an ideal complementary sliding-mode controller with good learning accuracy. Finally, to enhance the control performance of the proposed AFNFC system, a 32-bit ×86-microprocessor is adopted for the implementation of the proposed control system. A comparison among the fuzzy sliding-mode control, the intelligent-complementary sliding-mode control, the supervisory fuzzy neural network control, and the proposed AFNFC system is made. The experimental results demonstrate that the proposed AFNFC system can achieve favorable tracking performance and robust with regard to parameter variations for a DC gear motor driver.
    關聯: Neural Computing and Applications 23(1) Suppl., pp.303-313
    DOI: 10.1007/s00521-013-1401-3
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML377检视/开启
    index.html0KbHTML335检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈