English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7368489      線上人數 : 64
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/98387

    題名: Intelligent Postoperative Morbidity Prediction of Heart Disease Using Artificial Intelligence Techniques
    作者: Hsieh, Nan-Chen;Hung, Lun-Ping;Shih, Chun-Che;Keh, Huan-Chao;Chan, Chien-Hui
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Endovascular aneurysm repair (EVAR);Postoperative morbidity;Ensemble model;Machine learning;Markov blanket
    日期: 2012-08-01
    上傳時間: 2014-07-24 14:06:34 (UTC+8)
    出版者: New York: Springer New York LLC
    摘要: Endovascular aneurysm repair (EVAR) is an advanced minimally invasive surgical technology that is helpful for reducing patients’ recovery time, postoperative morbidity and mortality. This study proposes an ensemble model to predict postoperative morbidity after EVAR. The ensemble model was developed using a training set of consecutive patients who underwent EVAR between 2000 and 2009. All data required for prediction modeling, including patient demographics, preoperative, co-morbidities, and complication as outcome variables, was collected prospectively and entered into a clinical database. A discretization approach was used to categorize numerical values into informative feature space. Then, the Bayesian network (BN), artificial neural network (ANN), and support vector machine (SVM) were adopted as base models, and stacking combined multiple models. The research outcomes consisted of an ensemble model to predict postoperative morbidity after EVAR, the occurrence of postoperative complications prospectively recorded, and the causal effect knowledge by BNs with Markov blanket concept.
    關聯: Journal of Medical Systems 36(3), pp.1809-1820
    DOI: 10.1007/s10916-010-9640-7
    顯示於類別:[資訊工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋