English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51296/86402 (59%)
造訪人次 : 8162900      線上人數 : 85
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/98330


    題名: Robot Mapping Using Local Invariant Feature Detectors
    作者: Wang, Yin-Tien;Chi, Chen-Tung;Feng, Ying-Chieh
    貢獻者: 淡江大學機械與機電工程學系
    關鍵詞: Local invariant feature detectors;Robot mapping;Simultaneous localization and mapping;Speeded-up robust features
    日期: 2014-03-01
    上傳時間: 2014-07-18 11:33:47 (UTC+8)
    出版者: Bingley: Emerald Group Publishing Ltd.
    摘要: Purpose
    – To build a persistent map with visual landmarks is one of the most important steps for implementing the visual simultaneous localization and mapping (SLAM). The corner detector is a common method utilized to detect visual landmarks for constructing a map of the environment. However, due to the scale-variant characteristic of corner detection, extensive computational cost is needed to recover the scale and orientation of corner features in SLAM tasks. The purpose of this paper is to build the map using a local invariant feature detector, namely speeded-up robust features (SURF), to detect scale- and orientation-invariant features as well as provide a robust representation of visual landmarks for SLAM.
    Design/methodology/approach
    – SURF are scale- and orientation-invariant features which have higher repeatability than that obtained by other detection methods. Furthermore, SURF algorithms have better processing speed than other scale-invariant detection method. The procedures of detection, description and matching of regular SURF algorithms are modified in this paper in order to provide a robust representation of visual landmarks in SLAM. The sparse representation is also used to describe the environmental map and to reduce the computational complexity in state estimation using extended Kalman filter (EKF). Furthermore, the effective procedures of data association and map management for SURF features in SLAM are also designed to improve the accuracy of robot state estimation.
    Findings
    – Experimental works were carried out on an actual system with binocular vision sensors to prove the feasibility and effectiveness of the proposed algorithms. EKF SLAM with the modified SURF algorithms was applied in the experiments including the evaluation of accurate state estimation as well as the implementation of large-area SLAM. The performance of the modified SURF algorithms was compared with those obtained by regular SURF algorithms. The results show that the SURF with less-dimensional descriptors is the most suitable representation of visual landmarks. Meanwhile, the integrated system is successfully validated to fulfill the capabilities of visual SLAM system.
    Originality/value
    – The contribution of this paper is the novel approach to overcome the problem of recovering the scale and orientation of visual landmarks in SLAM tasks. This research also extends the usability of local invariant feature detectors in SLAM tasks by utilizing its robust representation of visual landmarks. Furthermore, data association and map management designed for SURF-based mapping in this paper also give another perspective for improving the robustness of SLAM systems.
    關聯: Engineering Computations 31(2), pp.297-316
    DOI: 10.1108/EC-01-2013-0024
    顯示於類別:[機械與機電工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html1061KbAdobe PDF160檢視/開啟
    index.html0KbHTML169檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋