English  |  正體中文  |  简体中文  |  Items with full text/Total items : 63998/96720 (66%)
Visitors : 3623314      Online Users : 397
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/98306


    Title: A study on mental models of taggers and experts for article indexing based on analysis of keyword usage
    Authors: Chen, Ya-Ning;Ke, Hao-Ren
    Contributors: 淡江大學資訊與圖書館學系
    Keywords: knowledge representation;taxonomy;information retrieval
    Date: 2014-08
    Issue Date: 2014-07-08 17:10:59 (UTC+8)
    Publisher: Hoboken: John Wiley & Sons, Inc.
    Abstract: This article explores the mental models of article indexing of taggers and experts in keyword usage. Better understanding of the mental models of taggers and experts and their usage gap may inspire better selection of appropriate keywords for organizing information resources. Using a data set of 3,972 tags from CiteULike and 6,708 descriptors from Library and Information Science Abstracts (LISA) from 1,489 scholarly articles of 13 library and information science journals, social network analysis and frequent-pattern tree methods were used to capture and build up the mental models of article indexing of taggers and experts when using keywords, and to generalize their structures and patterns. When measured with respect to the terms used, a power-law distribution, a comparison of terms used as tags and descriptors, social network analysis (including centrality, overall structure, and role equivalent) and frequent-pattern tree analysis, little similarity was found between the mental models of taggers and experts. Twenty-five patterns of path-based rules and 12 identical rules of frequent-pattern trees were shared by taggers and experts. Title- and topic-related keyword categories were the most popular keyword categories used in path-based rules of frequent-pattern trees, and also the most popular members of 25 patterns and the starting point of the 12 identical rules.

    經由社會標記者與索引專家間文獻標引心智模式落差的瞭解,可以引導選擇更適當關鍵字進行資訊資源組織。在樣本資料方面,本研究選取13種圖資期刊中1,489篇文獻的社會標記與控制詞彙等關鍵字為樣本,包括CiteULike的3,972個社標記與LISA的6,708個控制詞彙。在研究方法則採用社會網路分析與頻繁樣式數等方法,以擷取與建立社會標記者與索引專家的文獻標引心智模式,及討論隱藏在關鍵字間的關聯關係結構與樣式。從關鍵字的使用情形、冪次定律分布社會標記與控制詞彙間的關鍵字比對、社會網路分析(包括:中心度、階層集叢、同等角色)及頻繁樣式樹等方面而言,結果顯示社會標記者與索引專家間的文獻標引心智模式相似度不高。除此之外,在頻繁樣式樹分析結果方面,共歸納出25條頻繁樣式樹路徑規則,其中社會標記者與索引專家兩者間共有12條路徑規則相同。在關鍵字的使用類別方面,則以提名與主題相關的關鍵字類別最常被使用,同時也是前述25條頻繁樣式樹路徑規則中最常出現的成員,及前述12條頻繁樣式樹路徑規則的起始節點成員。
    Relation: Journal of the Association for Information Science and Technology 65(8), p.1675-1694
    DOI: 10.1002/asi.23077
    Appears in Collections:[Graduate Institute & Department of Information and Library Sciences] Journal Article

    Files in This Item:

    File Description SizeFormat
    A study on mental models of taggers and experts for article indexing based on analysis of keyword usage.pdf1266KbAdobe PDF5View/Open
    index.html0KbHTML480View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback