English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54907/89265 (62%)
造访人次 : 10599743      在线人数 : 20
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/98197

    题名: A Shared-Integral-Image Approach for Fast Gender Recognition
    作者: Shen, Bau-Cheng;Chen, Chu-Song;Hsu, Hui-Huang
    贡献者: 淡江大學資訊工程學系
    关键词: Gender Recognition;AdaBoost, Real AdaBoost;Support Vector Machine;Integral Image
    日期: 2008-11
    上传时间: 2014-06-13 15:44:23 (UTC+8)
    出版者: 臺北縣淡水鎮 : 淡江大學
    摘要: In this paper, we develop a new approach for gender recognition. Our approach uses the rectangle feature vector (RFV) as a representation to identify humans' gender from their faces. The RFV is computationally fast and effective to encode intensity variations of local . regions of human face. By only using few rectangle features learned by AdaBoost, we present an effective gender identifier. We then use nonlinear support vector machines for classification, and obtain more accurate identification results. Experimental results show that our approach performs well for the Feret database.
    關聯: 第十三屆人工智慧與應用研討會論文集=The 13th conference on artificial intelligence and applications, pp.13-17
    显示于类别:[資訊工程學系暨研究所] 會議論文


    档案 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈