English  |  正體中文  |  简体中文  |  Items with full text/Total items : 54451/89232 (61%)
Visitors : 10572425      Online Users : 34
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/98055

    Title: 非結構非凸網格之修正型Bowyer方法研究
    Authors: 宛同;周延機
    Contributors: 淡江大學航空太空工程學系
    Keywords: 非結構性網格;動態;非凸邊界;Unstructured Grid;Dynamic;Non-Convex Boundary
    Date: 1997-10
    Issue Date: 2014-05-22 15:28:18 (UTC+8)
    Publisher: 臺北市:中國航空太空學會
    Abstract: 以計算流體力學來解決物理問題時,網絡點之生成是非常重要的第一步,當遇到被雜邊界外形或動態問題時,通常以非結構性網絡來模擬較為方便。非結構性格點生成的方法有Advancing Front 、Sweepline and Sweepplane 、Quadtree 、與DelaWlay Triangulation 等。
    本文以DelaWlay Triangulation and Bowyer's Scheme來作為生成網絡點之方法,並加以改良﹒利用局部生成之方法,來改進食時之缺點;並加上邊界判定法,使加入之新綱格點都能落入正確之區城內。動態方面的處理則是使用Laplacian Smoothing。使得我們在處理邊界移動問題時,僅需直接拉動網格點,並局部做重建工作,不需要重新生成網絡點,如此可太太提昇網格生成效率。
    本文並對於DelaWlay Triangulation 方法所不能處理之非凸邊界問題提出一套新方法,即於區域內事先加入若干網格點,以保持生成過程中邊界之完整性,進而生成正確且品質良好之網格點。
    We try to employ Delaunay Triangulation and Bowyer's Scheme to generate the grid system, and at the same time, try to improve its drawbacks, i.e. inserting points in the wrong domains, non-convex domain grid construction, and time-consuming procedure, etc, We employ the method of the local generation to improve the time-consuming disadvantage, and we also use the boundary check to make the new adding points fall into the right domains. As we deal with the dynamic problems of moving boundary, the traditional method is to re-generate the whole area , and in this work, we employ Laplacian Smoothing method. Instead of regenerating the grid , the method extends the grid directly and refine it locally. Hence, The process will be very robust and efficient.
    We also offer a method to solve the problem of the nonconvex domain that cannot be solved with traditional Delaunay Triangulation, and the method is that we insert some grid points in the domains beforehand to keep the completeness of the boundary in the process of generation. And finally generate the correct and high quality grids.
    Appears in Collections:[Graduate Institute & Department of Aerospace Engineering] Proceeding

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback