English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7381968      線上人數 : 56
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/97569


    題名: Nitric Oxide Physiological Responses and Delivery Mechanisms Probed by Water-Soluble Roussin’s Red Ester and {Fe(NO)2}10 DNIC
    作者: Chen, Yi-Ju;Ku, Wei-Chi;Feng, Li-Ting;Tsai, Ming-Li;Hsieh, Chung-Hung;Hsu, Wen-Hwei;Liaw, Wen-Feng;Hung, Chen-Hsiung;Chen, Yu-Ju
    貢獻者: 淡江大學化學學系
    日期: 2008-08
    上傳時間: 2014-03-27 09:17:43 (UTC+8)
    出版者: Washington, DC: American Chemical Society
    摘要: Dinitrosyl−iron complexes (DNICs) are stable carriers for nitric oxide (NO), an important biological signaling molecule and regulator. However, the insolubility of synthetic DNICs, such as Roussin’s red ester (RRE), in water has impaired efforts to unravel their biological functions. Here, we report a water-soluble and structurally well-characterized RRE [Fe(μ-SC2H4COOH)(NO)2]2 (DNIC-1) and a {Fe(NO)2}10 DNIC [(PPh2(Ph-3-SO3Na))2Fe(NO)2] (DNIC-2), their NO-induced protein regulation, and their cellular uptake mechanism using immortalized vascular endothelial cells as a model. Compared with the most common NO donor, S-nitroso-N-acetyl-penicillamine (SNAP), the in vitro NO release assay showed that both DNICs acted as much slower yet higher stoichiometric NO-release agents with low cytotoxicity (IC50 > 1 mM). Furthermore, l-cysteine facilitated NO release from SNAP and DNIC-1, but not DNIC-2, in a dose- and time-dependent manner. EPR spectroscopic analysis showed, for the first time, that intact DNIC-1 can either diffuse or be transported into cells independently and can transform to either paramagnetic protein bound DNIC in the presence of serum or [DNIC-(Cys)2] with excess l-cysteine under serum-free conditions. Both DNICs subsequently induced NO-dependent upregulation of cellular heat shock protein 70 and in vivo protein S-nitrosylation. We conclude that both novel water-soluble DNICs have potential to release physiologically relevant quantities of NO and can be a good model for deciphering how iron−sulfur−nitrosyl compounds permeate into the cell membrane and for elucidating their physiological significance.
    關聯: Journal of the American Chemical Society 130(33), pp.10929-10938
    DOI: 10.1021/ja711494m
    顯示於類別:[化學學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML107檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋