English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49962/85138 (59%)
造訪人次 : 7790036      線上人數 : 71
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/97198

    題名: The induction of nanographitic phase on Fe coated diamond films for the enhancement in electron field emission properties
    作者: Kalpataru Panda;B. Sundaravel;B. K. Panigrahi;Chen, H.-C.;Huang, P.-C.;Shih, W.-C.;Lo, S.-C.;Lin, L.-J.;Lee, C.-Y.;Lin, I.-N.
    貢獻者: 淡江大學物理學系
    日期: 2013-03
    上傳時間: 2014-03-18 09:58:07 (UTC+8)
    出版者: College Park: American Institute of Physics
    摘要: A thin layer of iron coating and subsequent post-annealing (Fe-coating/post-annealing) is seen to significantly enhance the electron field emission (EFE) properties of ultrananocrystalline diamond (UNCD) films. The best EFE properties, with a turn on field (E0) of 1.98 V/μm and current density (Je) of 705 μA/cm2 at 7.5 V/μm, are obtained for the films, which were Fe-coated/post-annealed at 900 °C in H2 atmosphere. The mechanism behind the enhanced EFE properties of Fe coated/post-annealed UNCD films are explained by the microstructural analysis which shows formation of nanographitic phase surrounding the Fe (or Fe3C) nanoparticles. The role of the nanographitic phase in improving the emission sites of Fe coated/post-annealed UNCD films is clearly revealed by the current imaging tunneling spectroscopy (CITS) images. The CITS images clearly show significant increase in emission sites in Fe-coated/post-annealed UNCD films than the as-deposited one. Enhanced emission sites are mostly seen around the boundaries of the Fe (or Fe3C) nanoparticles which were formed due to the Fe-coating/post-annealing processes. Moreover, the Fe-coating/post-annealing processes enhance the EFE properties of UNCD films more than that on the microcrystalline diamond films. The authentic factor, resulting in such a phenomenon, is attributed to the unique granular structure of the UNCD films. The nano-sized and uniformly distributed grains of UNCD films, resulted in markedly smaller and densely populated Fe-clusters, which, in turn, induced more finer and higher populated nano-graphite clusters.
    關聯: Journal of Applied Physics 113(9), 094305(9pages)
    DOI: 10.1063/1.4792520
    顯示於類別:[物理學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    1.4792520.pdf2975KbAdobe PDF307檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋