淡江大學機構典藏:Item 987654321/97193
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62805/95882 (66%)
造访人次 : 3987468      在线人数 : 642
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/97193


    题名: Extremely high wear resistance and ultra-low friction behaviour of oxygen-plasma-treated nanocrystalline diamond films
    作者: R Radhika;N Kumar;K J Sankaran;Ravikumar Dumpala;S Dash;M S Ramachandra Rao;D Arivuoli;A K Tyagi;Tai, N H;Lin, I-Nan
    贡献者: 淡江大學物理學系
    日期: 2013-10
    上传时间: 2014-03-18 09:52:51 (UTC+8)
    出版者: Bristol: Institute of Physics Publishing Ltd.
    摘要: The diamond nanowire (DNW) film was deposited by N2-enriched microwave plasma-enhanced chemical vapour deposition (MPECVD) process. As-deposited DNW film was treated in O2 plasma which resulted in chemical and microstructural modification. Sheath of the DNW film is chemically constituted by amorphous carbon (a-C)- and graphite (sp2C=C)-like bonding. However, nanowires transformed into ultra-small spherical grains after the O2-plasma treatments. In this condition, a-C and sp2C=C bonding significantly reduced due to plasma etching caused by oxygen atoms. After the O2-plasma treatment, formation of functional groups such as C=O, C–O–C, O–H, O–CH3 and H2O was observed on the surface and inside the wear track as evident from the micro FTIR analysis. H2O is hydrogen bonded to oxygen-containing groups such as –OH and –H. The O2-plasma-exposed DNW film exhibits surface charging and causes formation of dangling bonds and electron trapping centres. This results in significant decrease in contact angle, hence superhydrophilic behaviour. The friction coefficient of O2-plasma-treated film showed super low value ~0.002 with high wear resistance 2 × 10−12 mm3 N−1 m−1. In the reciprocating ball-on-disc tribology test, only ~80 nm wear loss was observed after the 1 km of sliding distance at 10 N loads. Such an advance in tribological properties is explained by passivation of covalent carbon bonding and transformation of sliding surfaces by weak van der Waals and hydrogen bondings. High surface energy and the consequent superhydrophilic behaviour of film is attributed to the formation of the above-mentioned functional groups on the surface. This protects against deformation of the wear track leading to extremely high wear resistance.
    關聯: Journal of Physics D: Applied Physics 46(42), 425304(10pages)
    DOI: 10.1088/0022-3727/46/42/425304
    显示于类别:[物理學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Extremely high wear resistance and ultra-low friction behaviour of oxygen-plasma-treated nanocrystalline diamond films.pdf3343KbAdobe PDF1检视/开启
    index.html0KbHTML315检视/开启
    index.html0KbHTML119检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈