English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56464/90291 (63%)
造訪人次 : 11709402      線上人數 : 60
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/97001

    題名: Abnormal Event Detection Using HOSF
    作者: Yen, Shwu-Huey;Wang, Chun-Hui
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: normality;crowd;social force (SF);histogram of oriented social force (HOSF);z-value
    日期: 2013-12-16
    上傳時間: 2014-03-14 16:25:32 (UTC+8)
    摘要: In this paper a simple and effective crowd behavior normality method is proposed. We use the histogram of oriented social force (HOSF) as the feature vector to encode the observed events of a surveillance video. A dictionary of codewords is trained to include typical HOSFs. To detect whether an event is normal is accomplished by comparing how similar to the closest codeword via z-value. The proposed method includes the following characteristic: (1) the training is automatic without human labeling; (2) instead of object tracking, the method integrates particles and social force as feature descriptors; (3) z-score is used in measuring the normality of events. The method is testified by the UMN dataset with promising results.
    關聯: Proceedings of the International Conference on IT Convergence and Security (ICITCS 2013), 4p.
    顯示於類別:[資訊工程學系暨研究所] 會議論文


    檔案 描述 大小格式瀏覽次數
    Abnormal Event Detection Using HOSF.pdf635KbAdobe PDF633檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋