English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60696/93562 (65%)
造访人次 : 1055782      在线人数 : 23
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/96888

    题名: Unusual mechanical properties of melt-blended poly(lactic acid) (PLA)/clay nanocomposites
    作者: Lai, Sun-Mou;Wu,Sheng-Huang;Lin, Gwo-Geng;Don, Trong-Ming
    贡献者: 淡江大學化學工程與材料工程學系
    关键词: Poly(lactic acid);Clay;Nanocomposites;Mechanical properties;Exfoliation
    日期: 2014-03-01
    上传时间: 2014-03-14 09:02:30 (UTC+8)
    出版者: Pergamon Press
    摘要: The commercial organic-modified clay was incorporated into a nearly amorphous PLA matrix using a melt-blending process to form PLA/clay nanocomposites. The nanocomposite containing 1 phr of clay conferred the highest exfoliation of clay among all investigated clay dosages. Especially, only this particular nanocomposite had a lower modulus and exhibited significant stress-whitening and necking behavior with a large extension, elongation at break being increased to 208%, up to 37-fold increment compared to the neat PLA. Based on SEM and TEM pictures, the highly exfoliated platelets produced a relatively large interfacial area between the clay platelet and PLA matrix, which resulted in a comprehensively plasticized interfacial region. The highly plasticized interfacial region and the well-dispersed clay platelets with high aspect ratio, particular for thin samples, enhanced the multiple shear-banding which induced the plastic deformation and substantial shear yielding behavior. It also caused a decrease in the spherulite nucleation behavior of the PLA. On the contrary, when the clay was added at higher amounts, it existed mostly in the form of intercalated structure which acted as rigid filler, raising the modulus and causing an early failure in the tensile test. Both Halpin–Tsai and Mori–Tanaka equations were used to predict the modulus of the nanocomposites at higher clay contents where the Mori–Tanaka equation gave a better prediction.
    關聯: European Polymer Journal 52, pp.193–206
    DOI: 10.1016/j.eurpolymj.2013.12.012
    显示于类别:[化學工程與材料工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈