Problem-based learning strategy has been frequently adopted to develop students’ problem-solving ability. Despite the fact that its effects have been reasonably argued and empirically tested, its associated learning task may overload the learners, especially the novice. This paper, grounded on the cognitive load theory, argued the potentials of introducing the worked examples into problem-based learning activity. The purpose of this study is to explore the design principles of worked examples and test its effects. The geometric logic problem type was chosen as the main problem for participants to explore during the problem-based learning activity. A series of geometric logic problems was developed and tested in a pilot study to ensure its quality. Furthermore, worked examples and practice session were developed based on the principles suggested in the literature. A web-based learning system was created to engage participants in observing the logical problems, watching the examples and practicing solving the given problems. A pre-and-post experimental design was adopted to test the effect of worked-examples. Twenty-eight university students, matriculated in information-related programs, were recruited. The finding supported the positive effect of the worked examples on enhancing students’ logic problem solving performance.
Relation:
Workshop Proceedings of the 21st International Conference on Computers in Education, pp.192-195