English  |  正體中文  |  简体中文  |  Items with full text/Total items : 60917/93528 (65%)
Visitors : 1559695      Online Users : 12
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/96796


    Title: 應用移動漸近線法於結構之最佳化設計
    Other Titles: Optimum Design of Structures by Method of Moving Asymptotes
    Authors: 張永康;郭純孜;康祐嘉
    Contributors: 淡江大學航空太空工程學系
    Keywords: 移動漸近線法;對偶法;靈敏度分析;Method of Moving Asymptotes;Dual Method;Sensitivity analysis
    Date: 2011-11-05
    Issue Date: 2014-03-13 13:47:16 (UTC+8)
    Publisher: 臺南市:中華民國航太學會
    Abstract: 移動漸近線法的原理是將一個函數利用倒數近似法加上中介變數轉換為近似原問題的函數。因移動漸近線法可以處理各種設計參數並因應各式目標函數與限制條件,本研究應用移動漸近線法之特性得到函數之近似式並利用對偶法對最佳化問題求解。對偶法為將原本的最小化問題以與之有關的最大化對偶函數取代。也就是將原設計問題轉換為凸性且為可分離的子問題,這有助於結構最佳化問題能夠快速地求解。因此本研究應用移動漸近線法得到結構行為之近似函數,再採用對偶法執行結構之最佳化設計。
    Method of Moving Asymptotes (MMA) is used by reciprocal approximate and moving asymptotes to approximate an original function. Because MMA can deal with various kinds of design parameters and handle all kinds of objective and constraint functions, this study applies the characteristics of MMA to obtain the approximation function and then uses dual method to solve the problem. Dual method is that the original minimization problem is replaced by the maximization of dual function relating to it. That is, the dual method was used to solve design problem by a subproblem, which is convex and separable. Therefore, this study applies MMA to obtain the approximate function of structural behavior, and then adopts dual method to obtain the optimum design of structures.
    Relation: 2011中華民國航太學會學術研討會
    Appears in Collections:[航空太空工程學系暨研究所] 會議論文

    Files in This Item:

    File Description SizeFormat
    2011AASRC_張永康投稿論文.pdf投稿論文509KbAdobe PDF677View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback