English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58323/91876 (63%)
造访人次 : 14067563      在线人数 : 64
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/96672


    题名: Enzymatic hydrolysis suspension cross-flow diafiltration using polysulfone hollow fiber module
    作者: Hwang, Kuo-Jen;Tsai, H.-Y.;Chen, S.-T.
    贡献者: 淡江大學化學工程與材料工程學系
    关键词: Diafiltration;Sugar purification;Membrane fouling;Enzymatic hydrolysis;Bio-ethanol
    日期: 2014-03-15
    上传时间: 2014-03-12 15:57:19 (UTC+8)
    出版者: Amsterdam: Elsevier BV
    摘要: Glucose and enzyme in a high concentration enzymatic hydrolysis suspension were separated using hollow fiber cross-flow diafiltration. The operating condition effects on the filtration performance are discussed. Over 86% of the enzymes were retained using a 10 kDa polysulfone membrane. Most glucose molecules penetrated through the membrane into the filtrate. The major filtration resistances are due to the cake formation on the membrane surface and enzyme blocking in the membrane pores in addition to the appreciable virgin membrane resistance. The cake mass is correlated with the drag force ratio tangential to the filtration directions and the average specific cake filtration resistance is expressed as a power-function of the transmembrane pressure with a cake compressibility of 0.3. The empirical equation related the resistances due to internal membrane fouling to the operating conditions established by conducting experimental data regression. The filtration flux can be estimated accurately by substituting the results calculated using the empirical equations into the basic filtration equation. An increase in cross-flow velocity or transmembrane pressure leads to higher filtration flux. The filtration flux increases ca 2-fold as the cross-flow velocity increases from 0.3 to 1.5 m/s under a transmembrane pressure of 60 kPa. The filtration flux increases over 3-fold as the transmembrane pressure increases from 20 to 100 kPa. Two kinds of modified operating methods are used to improve the filtration flux. A pulse feeding method may increase the filtration flux by 25%, while the step-increase pressure method improves the filtration flux by over 34%. Forming a thin cake under low pressure in the early filtration period has great potential to significantly mitigate membrane pore blocking and enhance filtration flux.
    關聯: Journal of Membrane Science 454, pp.418-425
    DOI: 10.1016/j.memsci.2013.12.048
    显示于类别:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML192检视/开启
    index.html0KbHTML194检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈