English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 52333/87441 (60%)
造访人次 : 9111025      在线人数 : 206
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/96419


    题名: 運用次奇點技巧之三維浮體之全非線性波計算
    其它题名: An Application on Fully Nonlinear Wave Computations Using Desingularization Approach
    作者: 李宗翰;劉政詩;林忠安;陳昌隆
    贡献者: 淡江大學機械與機電工程學系
    关键词: 次奇異點尤拉-拉格朗日時間域法;次奇異點;時域;全非線性;自由液面邊界條件;物體邊界條件;Desingularized Eulerian-Lagrangian Time-Domain Approach;Desingularization;Time Domain;Fully Nonlinearity;Combined Free Surface Boundary Condition;Body Boundary Condition
    日期: 2001-05
    上传时间: 2014-03-07 11:36:41 (UTC+8)
    摘要: The DELTA方法(Desingularized eulerian-lagrangian time-domain approachmethod)所發展之數值模型,被用來模擬任意浮體作任意運動時所產生之波浪效應。而"次奇點(Desingularization)"的技巧被應用在運算過程中,無須特殊處理面積分時存在奇點(Singularities)的問題;因為所有奇點被分布於計算區域之外,而不是如傳統作法般,佈置在計算區域的邊界上。如此,程式的複雜度及所需之運算時間均可被減少。本數值模型在時間域內採用全非線性(Fullynon-linearized)之合併自由液面邊界條件(Combined free surface boundaryconditions)及物體邊界條件(Body boundary condition)。文中以此模型,對Wigley及Series 60兩種船型進行模擬計算。並且對船體運動所產生波浪形狀之計算值與實驗值作比較,最後對於計算結果進行討論。
    Fully nonlinear water wave problems are solved usingEulerian-Lagrangian time stepping methods in conjunction with adesingularized approach to solve the mixed boundary value problem thatarises at each time step. In the desingularized approach, thesingularities generating the flow field are outside the fluid domain.This allows the singularity distribution to be replaced by isolatedRankine sources with the corresponding reduction in computationalcomplexity and computer time. Examples of the use of the method inthree-dimensions are given for the exciting forces acting on amodified Wigley hull and Series 60 hull are presented.
    關聯: 第三屆海峽兩岸航空太空學術研討會論文集,頁127-136
    显示于类别:[機械與機電工程學系暨研究所] 會議論文

    文件中的档案:

    档案 大小格式浏览次数
    運用次奇點技巧之三維浮體之全非線性波計算 _中文摘要.docx15KbMicrosoft Word64检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈