The DELTA方法(Desingularized eulerian-lagrangian time-domain approachmethod)所發展之數值模型,被用來模擬任意浮體作任意運動時所產生之波浪效應。而"次奇點(Desingularization)"的技巧被應用在運算過程中,無須特殊處理面積分時存在奇點(Singularities)的問題;因為所有奇點被分布於計算區域之外,而不是如傳統作法般,佈置在計算區域的邊界上。如此,程式的複雜度及所需之運算時間均可被減少。本數值模型在時間域內採用全非線性(Fullynon-linearized)之合併自由液面邊界條件(Combined free surface boundaryconditions)及物體邊界條件(Body boundary condition)。文中以此模型,對Wigley及Series 60兩種船型進行模擬計算。並且對船體運動所產生波浪形狀之計算值與實驗值作比較,最後對於計算結果進行討論。 Fully nonlinear water wave problems are solved usingEulerian-Lagrangian time stepping methods in conjunction with adesingularized approach to solve the mixed boundary value problem thatarises at each time step. In the desingularized approach, thesingularities generating the flow field are outside the fluid domain.This allows the singularity distribution to be replaced by isolatedRankine sources with the corresponding reduction in computationalcomplexity and computer time. Examples of the use of the method inthree-dimensions are given for the exciting forces acting on amodified Wigley hull and Series 60 hull are presented.