普朗特-梅耶二氏流邊界值問題具有相 似確解,且該解適用於任意轉折角.delta.及自 由流為穿音速,超音速及極音速之流動範圍。 當轉折角.delta..arrr.0時,本文利用漸近展開法 直接在物理平面上處理其非線性常微分方程式 之邊界值問題,並且有系統的求得普朗特-梅耶 二氏流之極音速一階及二階漸近解,而本文所 得之二階漸近解較傳統之微小擾動法所得者更 為完整與準確。 In this paper, a systematic approach for obtaining the second-order hypersonic solution to the boundary-value problem of Prandtl-Meyer flow is given by considering a general higher order expansion of the hypersonic parameter together with the method of Strained Coordinates. We have chosen to treat the case of Prandtl-Meyer flow specifically because an exact similarity solution exists. In this fashion, by comparing the results, we can obtain some feeling for just how accurate the hypersonic small-disturbance theory is.
關聯:
中華民國力學學會第十四屆全國力學會議論文集(二)=Proceedings of the 14th National Conference on Theoretical and Applied M=echanics (II),頁1047-1056