English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49925/85107 (59%)
Visitors : 7780592      Online Users : 56
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/96396


    Title: 普朗特-梅耶二氏流邊界值問題之極音速二 階漸近解
    Other Titles: Second-order Hypersonic Solution of the Boundary-Value Problem of Prandtl-Meyer Flow
    Authors: 馮朝剛;高百齡
    Contributors: 淡江大學航空太空工程學系
    Keywords: 普朗特-梅耶二氏流;邊界值問題;極音速二階漸近解;相似解;極音速參數;應變座標;Prandtl-Meyer Flow;Boundary Value Problem;Second-Order Hypersonic Solution;Similarity Solution;Hypersonic Parameter;Strained Coordinate
    Date: 1990-12
    Issue Date: 2014-03-07 11:30:58 (UTC+8)
    Abstract: 普朗特-梅耶二氏流邊界值問題具有相 似確解,且該解適用於任意轉折角.delta.及自 由流為穿音速,超音速及極音速之流動範圍。 當轉折角.delta..arrr.0時,本文利用漸近展開法 直接在物理平面上處理其非線性常微分方程式 之邊界值問題,並且有系統的求得普朗特-梅耶 二氏流之極音速一階及二階漸近解,而本文所 得之二階漸近解較傳統之微小擾動法所得者更 為完整與準確。
    In this paper, a systematic approach for obtaining the second-order hypersonic solution to the boundary-value problem of Prandtl-Meyer flow is given by considering a general higher order expansion of the hypersonic parameter together with the method of Strained Coordinates. We have chosen to treat the case of Prandtl-Meyer flow specifically because an exact similarity solution exists. In this fashion, by comparing the results, we can obtain some feeling for just how accurate the hypersonic small-disturbance theory is.
    Relation: 中華民國力學學會第十四屆全國力學會議論文集(二)=Proceedings of the 14th National Conference on Theoretical and Applied M=echanics (II),頁1047-1056
    Appears in Collections:[航空太空工程學系暨研究所] 會議論文

    Files in This Item:

    File Description SizeFormat
    普朗特-梅耶二氏流邊界值問題之極音速二 階漸近解_中文摘要.docx摘要14KbMicrosoft Word70View/Open
    普朗特-梅耶二氏流邊界值問題之極音速二 階漸近解_英文摘要.docx摘要14KbMicrosoft Word80View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback