English  |  正體中文  |  简体中文  |  Items with full text/Total items : 58793/92524 (64%)
Visitors : 644066      Online Users : 40
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/96334

    Title: 微流道內之滑動氣體流場探討
    Other Titles: Gaseous Slip Flow in Micro-Channels
    Authors: 陳慶祥;余福治
    Contributors: 淡江大學航空太空工程學系
    Keywords: 滑動流場;微流道;微機電系統;Slip Flow;Micro Channel;Micro Electro Mechanical System
    Date: 1998-12
    Issue Date: 2014-03-07 09:09:55 (UTC+8)
    Abstract: 本文以數值方法探討微流道內之滑動氣體流場, 工作流體為氮氣和氦氣, 假設流體為連體但邊界為可滑動。雖然本文作者在不久前成功地以解非穩態可壓縮之Navier-Stokes方程式來探討此一問題, 但因此方程組之雙曲及拋物線特性使得此一解法非常沒有效率, 本研究結果證實滑動氣體流場可由穩態可壓縮之邊界層方程式來求解。由於穩態邊界層方程式為一組拋物線方程組, 其解可以快速求得, 使得此一解法成為研究滑動氣體流場之高效率精確工具。本文結果也讓我們瞭解滑動流場之有趣特性: (1)驅動此一流場之壓力梯度相當大但由於與壁面之摩擦力很大管內流體速度相當小, 其相對之雷諾數亦相當小, 大約是10/sup -3/到10/sup -2/, 因此本文所探討之流場可假設為層流。(2)在微流道內擴散為動量及能量交換傳遞的主要方式, 滑動邊界是由於氣體分子與管壁動量及能量交換不完全所致, 此一滑動邊界對流場速度及質流率均有決定性的影響。
    The present work studies numerically gaseous flow in micro-channels. The working fluids are nitrogen and helium and their Knudsen numbers at the channel outlet are 0.055 and 0.165, respectively. The proposed model assumes the fluid is a continuum but employs a slip boundary condition on the channel wall. Although slip flows in micro-channels can be investigated by solving the unsteady, compressible Navier-Stokes equations, as was done previously by the author, the hyperbolic-parabolic character of the equations makes it very inefficient. The results of present work show that they can be predicted accurately by solving the compressible boundary-layer equations. The parabolic character of the boundary-layer equations renders the present method a very efficient and accurate tool in studying slip flows. The results of present study also reveal some interesting features of micro-channel flows. First, a large pressure gradient is required to drive the flow due to the extraordinarily small channel height, but the velocity remains very small in the cases studied due to the high shear stress at the wall. Since the velocities are small, the corresponding Reynolds numbers are also small, on the order of 10/sup -3/ to 10/sup -2/, the flows simulated can be safely assumed to be laminar. Second, diffusion is the dominant mechanism in momentum and energy transfers inside the channel. The slip boundary condition is the result of rarefaction which is due to the incomplete momentum and energy exchanges between gas molecules and the walls. Our results show that the slip condition has decisive effects on the velocity and mass flow rate of the flow.
    Relation: 中國航空太空學會八十七年年會暨第四十屆學術研討會論文集(上冊),頁145-151
    Appears in Collections:[Graduate Institute & Department of Aerospace Engineering] Proceeding

    Files in This Item:

    File Description SizeFormat
    微流道內之滑動氣體流場探討_英文摘要.docx摘要15KbMicrosoft Word88View/Open
    振動薄膜模態特徵值問題之相似律及其應用 _中文摘要.docx13KbMicrosoft Word154View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback