淡江大學機構典藏:Item 987654321/96254
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62822/95882 (66%)
Visitors : 4028272      Online Users : 572
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/96254


    Title: Acceleration of vertex component analysis for spectral unmixing with CUDA
    Authors: Wei, Shih-Chieh;Huang, Bormin;Antonio Plaza
    Contributors: 淡江大學資訊管理學系
    Keywords: Computer programming;Graphics processing units;Matrices;Parallel computing
    Date: 2013-10
    Issue Date: 2014-03-06 17:08:40 (UTC+8)
    Abstract: Hyperspectral images can be used to identify the unique materials present in an area.Due to the limited spatial resolution, each pixel of the image is considered as a mixture of several different pure substances or endmembers. Several spectral unmixing methods have been developed for endmember extraction in an image. Among them, the vertex component analysis (VCA) algorithm is a popular one for its superior performance. As there are a lot of matrix/vector operations involved in the VCA algorithm, this work aims to apply the highly parallel computing power of recent GPUs which are reported to have good success in acceleration of many compute intensive applications. In the experiment, the compute unified device architecture (CUDA) which provide more convenient programming model is used. The speedup is measured with respect to standard C code on a single core CPU for evaluation.Our experiments are performed on a typical case where the number of extracted endmembers is 30 from the 188-band Cuprite hyperspectral dataset.The results show that a speedup of 42x can be achieved on a pure GPU implementation using CULA and CUBLAS libraries. As VCA involves Singular Value Decomposition (SVD) operation and SVD is faster on CPU than GPU for small data sizes as is our case, a speedup of 58x can be achieved on a hybrid implementation when SVD is carried out on CPU.
    Relation: Proc. SPIE 8895, High-Performance Computing in Remote Sensing III, 889509
    DOI: 10.1117/12.2031527
    Appears in Collections:[Graduate Institute & Department of Information Management] Proceeding

    Files in This Item:

    There are no files associated with this item.

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback