English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64176/96941 (66%)
造訪人次 : 9185483      線上人數 : 15331
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/96216


    題名: MULTI-OBJECTIVE GENETIC-FUZZY DATA MINING
    作者: Chen, Chun-Hao;Hong, Tzung-Pei;Tseng, Vincent S.;Chen, Lien-Chin
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Multi-objective optimization;Genetic algorithm;Fuzzy set;Fuzzy association rules;Data mining
    日期: 2012-10
    上傳時間: 2014-03-06 13:47:08 (UTC+8)
    出版者: Kumamoto: I C I C International
    摘要: Many approaches have been proposed for mining fuzzy association rules.The membership functions, which critically influence the final mining results, are difficult to define. In general, multiple criteria are considered when defining membership functions. In this paper, a multi-objective genetic-fuzzy mining algorithm is proposed for extracting membership functions and association rules from quantitative transactions.Two objective functions are used to find the Pareto front. The first one is the suitability of membership functions. It consists of the coverage factor and the overlap factor and is used to avoid two unsuitable types of membership function. The second one is the total
    number of large 1-itemsets from a given set of minimum support values. Experimental results show the effectiveness of the proposed approach in finding the Pareto-front membership functions.
    關聯: International Journal of Innovative Computing, Information and Control 8(10A), pp.6551-6568
    顯示於類別:[資訊工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML195檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋