淡江大學機構典藏:Item 987654321/96165
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62830/95882 (66%)
Visitors : 4048582      Online Users : 593
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/96165


    Title: Ab Initio Molecular Dynamics Study of Ethylene Adsorption onto Si(001) Surface: Short-time Fourier Transform Analysis of Structural Coordinate Autocorrelation Function
    Authors: Li, Yung-Ting;Lin, Jyh Shing
    Contributors: 淡江大學化學學系
    Keywords: ab initio molecular dynamics;ethylene adsorption;Si(001) surface;autocorrelation function;short-time Fourier transform
    Date: 2013-12-05
    Issue Date: 2014-03-05 11:42:51 (UTC+8)
    Publisher: Hoboken: Jossey Bass, Ed. & Pub.
    Abstract: The reaction dynamics of ethylene adsorption onto the Si(001) surface have been studied by combining density functional theory-based molecular dynamics simulations with molecular adsorption sampling scheme for investigating all kinds of reaction pathways and corresponding populations. Based on the calculated results, three possible reaction pathways—the indirect adsorption, the direct adsorption, and the repelling reaction—have been found. First, the indirect adsorption, in which the ethylene (C2H4(ads)) forms the π-bonded C2H4(ads) with the buckled-down Si atom to adsorb on the Si(001) surface and then turns into the di-σ-bonded C2H4(ads), is the major reaction pathway. The short-time Fourier transform analysis of structural coordinate autocorrelation function is performed to further investigate the evolution of different vibrational modes along this indirect reaction pathway. This analysis illustrates that the Infrared (IR) inactive peak of the C[DOUBLE BOND]C stretching mode of the π-bonded C2H4(ads) shifts to the IR inactive peak of the C[BOND]C stretching mode of di-σ-bonded C2H4(ads), which is in a good agreement with the IR inactive peak of the C[DOUBLE BOND]C stretching mode vanished in the vibrational spectrum at 150 K (Nagao et al., J. Am. Chem. Soc. 2004, 126, 9922). Second, the direct adsorption, in which the di-σ-bonded C2H4(ads) is formed directly with the Si intradimer or the Si interdimer on the Si(001) surface, is the less significant reaction pathway. This reaction pathway leads to the C[BOND]C stretching mode and the C[BOND]H stretching mode of the di-σ-bonded C2H4(ads) appeared in the vibrational spectra at 48 and 150 K, respectively (Nagao et al., J. Am. Chem. Soc. 2004, 126, 9922). Finally, the repelling reaction, in which the C2H4(g) first interacts with the Si dimer and then is repelled by Si atoms, is the least important reaction pathway. Consequently, neither the π-bonded C2H4(ads) nor the di-σ-bonded C2H4(ads) is formed on the Si(001) surface.
    Relation: Journal of computational chemistry 34(31), pp.2697-2705
    DOI: 10.1002/jcc.23434
    Appears in Collections:[Graduate Institute & Department of Chemistry] Journal Article

    Files in This Item:

    File Description SizeFormat
    JCC_23434.pdf1384KbAdobe PDF405View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback