English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62805/95882 (66%)
造訪人次 : 3979387      線上人數 : 245
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/96116

    題名: A combined mining-based framework for predicting telecommunications customer payment behaviors
    作者: Chen, Chun-Hao;Chiang, Rui-Dong;Wu, Terng-Fang;Chu, Huan-Chen
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Late payment prediction system;Association rules;Clustering;Decision trees;Domain-driven data mining
    日期: 2013-11-01
    上傳時間: 2014-02-27 15:08:53 (UTC+8)
    出版者: Kidlington: Pergamon
    摘要: Most existing data mining algorithms apply data-driven data mining technologies. The major disadvantage of this method is that expert analysis is required before the derived information can be used. In this paper, we thus adopt a domain-driven data mining strategy and utilize association rules, clustering, and decision trees to analyze the data from fixed-line users for establishing a late payment prediction system, namely the Combined Mining-based Customer Payment Behavior Predication System (CM-CoP). The CM-CoP could indicate potential users who may not pay the fee on time. In the implementation of the proposed system, first association rules were used to analyze customer payment behavior and the results of analysis were used to generate derivative attributes. Next, the clustering algorithm was used for customer segmentation. The cluster of customers who paid their bills was found and was then deleted to reduce data imbalances. Finally, a decision tree was utilized to predict and analyze the rest of the data using the derivative attributes and the attributes provided by the telecom providers. In the evaluation results, the average accuracy of the CM-CoP model was 78.53% under an average recall of 88.13% and an average gain of 11.2% after a six-month validation. Since the prediction accuracy of the existing method used by telecom providers was 65.60%, the prediction accuracy of the proposed model was 13% greater. In other words, the results indicate that the CM-CoP model is effective, and is better than that of the existing approach used in the telecom providers.
    關聯: Expert Systems with Applications 40(16), pp.6561-6569
    DOI: 10.1016/j.eswa.2013.06.001
    顯示於類別:[資訊工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋