English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7380468      線上人數 : 71
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/96084


    題名: Gravity Currents Propagating on Sloping Boundaries
    作者: Dai, Albert
    貢獻者: 淡江大學水資源及環境工程學系
    關鍵詞: Gravity currents;Buoyancy-driven flows;Thermal theory
    日期: 2013-06
    上傳時間: 2014-02-20 16:16:55 (UTC+8)
    出版者: Reston: American Society of Civil Engineers
    摘要: Three-dimensional direct numerical simulations of gravity currents on different bottom slopes are presented in this paper. After the buoyancy closed in a lock is instantaneously released, the produced gravity currents go through an acceleration phase followed by a deceleration phase. In the acceleration phase, the tail current connects to and feeds buoyancy into the head for all cases considered here. The maximum buoyancy contained in the head, reached at the end of the acceleration phase, increases as the bottom slope increases. The maximum buoyancy in the head never reaches the total released buoyancy, and a significant portion of released heavy fluid is left in the tail current. In the deceleration phase, the tail current continues to join the head as the gravity currents propagate for lower slope angles (θ=0.2, and 4°), but the head disconnects the joining tail current for higher slope angles (θ=6, 8, and 10°). The gravity current head loses contained buoyancy less rapidly in the deceleration phase as the bottom slope increases. Structures of the gravity current indicate that the relative length of the head diminishes as the gravity currents propagate downslope for lower slope angles and remains approximately constant for higher slope angles. The maximum front velocity increases as the bottom slope increases. In the deceleration phase, the front location–time relationship follows the thermal theory power law for higher slope angles and for lower slope angles, and the inertial phase power-law asymptote is observed.
    關聯: Journal of Hydraulic Engineering 139(6), pp.593-601
    DOI: 10.1061/(ASCE)HY.1943-7900.0000716
    顯示於類別:[水資源及環境工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML125檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋