English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54905/89265 (62%)
造访人次 : 10597971      在线人数 : 43
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/96022


    题名: Integration of FCM and Agglomeration with Kohonen Clustering Networks
    作者: Hsieh, Ching-Tang;Lai, Eugene;Ye, Jin-Ruong;Hung, Kuo-Ming
    贡献者: 淡江大學電機工程學系
    关键词: 叢聚分析;柯霍氏網路;模糊集合;凝聚;非督導性學習;Clustering Analysis;Kohonen Network;Fuzzy Set;Agglomeration;Unsupervised Learning
    日期: 1999-08
    上传时间: 2014-02-13 11:35:51 (UTC+8)
    摘要: The study of classical pattern recognition most closely related to the Kohonen self-organizing algorithms is known as cluster analysis. This class of algorithms is a set of heuristic procedures that suffers from several problems. We present a fuzzy agglomeration Kohonen clustering network which integrates the competitive agglomeration model into the learning rate and updating strategies of the Kohonen network. The objective function of competitive agglomeration composes of two terms: one is similar to the Fuzzy C-means (FCM) objective function; the other is the sum of squares of the cardinalities of clusters which allows us to control the number of clusters. This yields an optimization problem related to competitive agglomeration. Anderson's IRIS data are used to illustrate this method; and results are compared with the standard Kohonen approach and the fuzzy Kohonen clustering network.
    關聯: 第八屆國際模糊系統學會世界年會暨研討會論文集﹝第二冊﹞=Proceedings of the Eighth International Fuzzy Systems Association World Congress ( Vol.II ),頁757-761
    显示于类别:[電機工程學系暨研究所] 會議論文

    文件中的档案:

    档案 大小格式浏览次数
    Integration of FCM and Agglomeration with Kohonen Clustering Networks_英文摘要.docx15KbMicrosoft Word107检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈