English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55176/89445 (62%)
造访人次 : 10658283      在线人数 : 23
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/96021

    题名: Generating Diagnostic Rules Directly from Experimental Data
    作者: Su, Mu-Chun
    贡献者: 淡江大學電機工程學系
    关键词: 診斷;實驗數據;類神經網路;模糊系統;Diagnosis;Experimental Data;Neural Network;Fuzzy System
    日期: 1996-05
    上传时间: 2014-02-13 11:35:44 (UTC+8)
    摘要: Traditionally, a major task in building a medical diagnosis expert system is the process of acquiring the required knowledge in the form of production rules(IF...THEN...). Alternative knowledge acquisition approach to articulating knowledge required for diagnostic tasks are presented in this paper. Each approach has its own advantages and disadvantages. The ultimate goal of these approaches is to free human experts from tedious diagnosis loads. The effectiveness of these approaches is demonstrated by an example of a hypothesis regarding the pathophysiology of diabetes.
    關聯: 第二屆國際醫學工程週論文集=Proceedings of the 2nd Medical Engineering Week of the World,頁438-443
    显示于类别:[電機工程學系暨研究所] 會議論文


    档案 大小格式浏览次数
    Generating Diagnostic Rules Directly from Experimental Data_英文摘要.docx15KbMicrosoft Word65检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈