淡江大學機構典藏:Item 987654321/95971
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56826/90532 (63%)
造访人次 : 12251029      在线人数 : 50
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/95971


    题名: A Real-Valued GA-Based Approach to Extracting Control Fuzzy Rules
    作者: Su, Mu-Chun;Chang, Hsiao-Te;Yu, Hua-Chiao
    贡献者: 淡江大學電機工程學系
    关键词: 遺傳演算法;模糊邏輯控制器;神經-模糊系統;專家系統;Genetic Algorithm;Fuzzy Logic Controller;Neuro-Fuzzy System;Expert System
    日期: 1996-04
    上传时间: 2014-02-13 11:28:51 (UTC+8)
    摘要: In this paper, we present a neuro-fuzzy approach to design a controller directly from numerical data. The proposed neuro-fuzzy system is implemented as a two-layer Fuzzy Degraded HyperEllipsoidal Composite Neural Network(FDHECNN). We used a real-valued genetic algorithm to adjust weights of the composite neural networks. After sufficient training, the synaptic weights of the trained FDHECNN can be utilized to extract a set of fuzzy if-then rules. The performance of a trained FDHECNN is shown to be computationally identical to a fuzzy logic controller. The effectiveness and feasibility of the neuro-fuzzy system are tested on the truck backer-upper control problem.
    關聯: 一九九六自動控制研討會暨兩岸機電及控制技術交流學術研討會論文集=Proceedings of 1996 Automatic Control Conference,頁289-294
    显示于类别:[電機工程學系暨研究所] 會議論文

    文件中的档案:

    档案 大小格式浏览次数
    A Real-Valued GA-Based Approach to Extracting Control Fuzzy Rules_英文摘要.docx22KbMicrosoft Word66检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈