English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51296/86402 (59%)
造訪人次 : 8167495      線上人數 : 91
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/95971

    題名: A Real-Valued GA-Based Approach to Extracting Control Fuzzy Rules
    作者: Su, Mu-Chun;Chang, Hsiao-Te;Yu, Hua-Chiao
    貢獻者: 淡江大學電機工程學系
    關鍵詞: 遺傳演算法;模糊邏輯控制器;神經-模糊系統;專家系統;Genetic Algorithm;Fuzzy Logic Controller;Neuro-Fuzzy System;Expert System
    日期: 1996-04
    上傳時間: 2014-02-13 11:28:51 (UTC+8)
    摘要: In this paper, we present a neuro-fuzzy approach to design a controller directly from numerical data. The proposed neuro-fuzzy system is implemented as a two-layer Fuzzy Degraded HyperEllipsoidal Composite Neural Network(FDHECNN). We used a real-valued genetic algorithm to adjust weights of the composite neural networks. After sufficient training, the synaptic weights of the trained FDHECNN can be utilized to extract a set of fuzzy if-then rules. The performance of a trained FDHECNN is shown to be computationally identical to a fuzzy logic controller. The effectiveness and feasibility of the neuro-fuzzy system are tested on the truck backer-upper control problem.
    關聯: 一九九六自動控制研討會暨兩岸機電及控制技術交流學術研討會論文集=Proceedings of 1996 Automatic Control Conference,頁289-294
    顯示於類別:[電機工程學系暨研究所] 會議論文


    檔案 大小格式瀏覽次數
    A Real-Valued GA-Based Approach to Extracting Control Fuzzy Rules_英文摘要.docx22KbMicrosoft Word61檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋