淡江大學機構典藏:Item 987654321/95955
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 9304545      在线人数 : 213
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/95955


    题名: A Hybrid Prototype Construction and Feature Selection Method with Parameter Optimization for Support Vector Machine
    作者: Wong, Ching-Chang;Leu, Chun-Liang
    贡献者: 淡江大學電機工程學系
    关键词: Dynamic condensed nearest neighbor;Prototype construction;Feature selection;Genetic algorithm;Support vector machine
    日期: 2008-11
    上传时间: 2014-02-13 11:26:25 (UTC+8)
    摘要: In this paper, an order-independent algorithm for data reduction, called the Dynamic Condensed Nearest Neighbor (DCNN) rule, is proposed to adaptively construct prototypes in training dataset and to reduce the over-fitting affect with superfluous instances for the Support Vector Machine (SVM). Furthermore, a hybrid model based on the genetic algorithm is proposed to optimize the prototype construction, feature selection, and the SVM kernel parameters setting simultaneously. Several UCI benchmark datasets are considered to compare the proposed GA-DCNN-SVM approach with the GA-based previously published method. The experimental results show that the proposed hybrid model outperforms the existing method and improves the classification accuracy for SVM.
    關聯: Proceedings of the 2008 International Computer Symposium (ICS 2008),6頁
    显示于类别:[電機工程學系暨研究所] 會議論文

    文件中的档案:

    档案 大小格式浏览次数
    A Hybrid Prototype Construction and Feature Selection Method with Parameter Optimization for Support Vector Machine_英文摘要.docx21KbMicrosoft Word151检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈