English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58335/91896 (63%)
造访人次 : 12255      在线人数 : 226
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/95944

    题名: Speech Classification Based on Fuzzy Adaptive Resonance Theory
    作者: Hsieh, Ching-Tang;Hsu, Chih-Hsu
    贡献者: 淡江大學電機工程學系
    关键词: Speech classification;Neuro-fuzzy system;Fuzzy ART
    日期: 2006-10
    上传时间: 2014-02-13 11:24:45 (UTC+8)
    摘要: This paper presents a neuro-fuzzy system to speech classification. We propose a multi-resolution feature extraction technique to deal with adaptive frame size. We utilize fuzzy adaptive resonance theory (FART) to cluster each frame. FART was an extension to ART, performs clustering of its inputs via unsupervised learning. ART describes a family of self-organizing neural networks, capable of clustering arbitrary sequences of input patterns into stable recognition codes. In our experiments, the TIMIT database is used and extracts features of each phoneme. The performance of speech classification is 88.66%, demonstrate the effectiveness of the proposed system is encouraging.
    關聯: Proceedings of 9th Joint Conference on Information Sciences,4頁
    显示于类别:[電機工程學系暨研究所] 會議論文


    档案 大小格式浏览次数
    Speech Classification Based on Fuzzy Adaptive Resonance Theory_英文摘要.docx21KbMicrosoft Word90检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈