English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56738/90513 (63%)
造访人次 : 12090814      在线人数 : 36
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/95910

    题名: Particle Swarm Optimization Algorithm and Its Application to Clustering Analysis
    作者: Chen, Ching-Yi;Ye, Fun
    贡献者: 淡江大學電機工程學系
    关键词: Clustering analysis;PSO
    日期: 2004-03
    上传时间: 2014-02-13 11:19:41 (UTC+8)
    出版者: Piscataway: Institute of Electrical and Electronics Engineers (IEEE)
    摘要: Clustering analysis is applied generally to Pattern Recognition, Color Quantization and Image Classification. It can help the user to distinguish the structure of data and simplify the complexity of data from mass information. The user can understand the implied information behind extracting these data. In real case, the distribution of information can be any size and shape. A particle swarm optimization algorithm-based technique, called PSO-clustering, is proposed in this article. We adopt the particle swarm optimization to search the cluster center in the arbitrary data set automatically. PSO can search the best solution from the probability option of the Social-only model and Cognition-only model. This method is quite simple and valid, and it can avoid the minimum local value. Finally, the effectiveness of the PSO-clustering is demonstrated on four artificial data sets.
    關聯: Networking, Sensing and Control, 2004 IEEE International Conference on, vol.2, pp.789-794
    DOI: 10.1109/ICNSC.2004.1297047
    显示于类别:[電機工程學系暨研究所] 會議論文


    档案 描述 大小格式浏览次数
    1810-7869_2p789-794.pdf298KbAdobe PDF169检视/开启
    Particle Swarm Optimization Algorithm and Its Application to Clustering Analysis_英文摘要.docx摘要21KbMicrosoft Word180检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈