English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56738/90513 (63%)
造訪人次 : 12090977      線上人數 : 48
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/95896

    題名: K-Means Algorithm Based on Particle Swarm Optimization
    作者: Chen, Ching-Yi;Ye, Fun
    貢獻者: 淡江大學電機工程學系
    關鍵詞: Clustering analysis;Particle swarm optimization;K-means
    日期: 2003-12
    上傳時間: 2014-02-13 11:17:55 (UTC+8)
    摘要: Clustering analysis aims at discovering groups and identifying interesting distributions and patterns in data sets. It can help the user to distinguish the structure of data and simplify the complexity of data from mass information. A particle swarm optimization-based clustering technique that utilized the principles of K-means algorithm, called KPSO-clustering, is proposed in this article. We attempt to integrate the effectiveness of the K-means algorithm for partitioning data into a number of clusters, with the capability of PSO to bring it out of the local minima. Finally, the effectiveness of the KPSO-clustering is demonstrated on four artificial data sets.
    關聯: Proceedings of 2003 International Conference on Informations, Cybernetics, and Systems,頁1470-1475
    顯示於類別:[電機工程學系暨研究所] 會議論文


    檔案 大小格式瀏覽次數
    K-Means Algorithm Based on Particle Swarm Optimization_英文摘要.docx20KbMicrosoft Word151檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋