English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58323/91877 (63%)
造访人次 : 14292517      在线人数 : 119
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/95869

    题名: Neural Network-Based Fuzzy Systems
    作者: Su, Mu-Chun;Kao, Chien-Jen;Liu, Kai-Ming
    贡献者: 淡江大學電機工程學系
    关键词: 模糊類神經網路;模糊規則抽取;函數近似;FDHECNNFuzzy Neural Network;Fuzzy Rule Extraction;Function Approximation;Fdhecnn
    日期: 1994-12
    上传时间: 2014-02-13 11:13:54 (UTC+8)
    摘要: In this paper, we discuss how to use FDHECNN's (fuzzy degraded hyperellipsoidal composite neural networks) to extract fuzzy rules for function approximation. The FDHECNN can perform function approximation in the same manner as networks based on Gaussion potential functions, by linear combination of local functions. Furthermore, the output functions of the hidden nodes in the FDHECNN's offer more flexibility than Gaussion potential functions do. A special scheme is developed to find a set of good initial weights in order to speed up the convergence problem. Results of simulations of a system identification demonstrates that the feasibility and robustness of the proposed fuzzy neural networks.
    關聯: 1994 International Computer Symposium Conference Proceeding Volume 2 of 2,頁1246-1250
    显示于类别:[電機工程學系暨研究所] 會議論文





    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈