English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60696/93562 (65%)
造访人次 : 1054091      在线人数 : 32
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/95855


    题名: Face Detection Based on SVM Classification
    作者: Lin, Hwei-Jen;Wang, Chun-Wei;Pai, I-Chun
    贡献者: 淡江大學資訊工程學系
    关键词: Face detection;Skin color segmentation;RGB color space;HSV color space;Support vector machine (SVM)
    日期: 2008-11
    上传时间: 2014-02-13
    出版者: 臺北縣淡水鎮 : 淡江大學
    摘要: This paper proposes an improved version of ourpreviously introduced face detection system based onskin color segmentation and neural networks. Thenew system, using a support vector machine (SVM)based method for learning and verification, consistsof several stages. First, the system searches for theregions where faces might exist by using skin colorinformation and forms a so-called skin map. Afterperforming noise removal and some morphologicaloperations on the skin map, it utilizes the aspect ratioof a face to find out possible face blocks, and theneye detection is carried out within each possible faceblock. If an eye pair is detected in a possible faceblock, a region is cropped according to the locationof the two eyes, which is called a face candidate;otherwise it is regarded as a non-face block. Finally,each of the face candidates is verified by a supportvector machine. Experimental results reflects that thenew version improves the verification accuracy of thepreviously proposed system.
    關聯: 第十三屆人工智慧與應用研討會論文集=The 13th conference on artificial intelligence and applications, pp.158-164
    显示于类别:[資訊工程學系暨研究所] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Face Detection Based on SVM Classification_英文摘要.docx摘要20KbMicrosoft Word106检视/开启
    index.html0KbHTML251检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈