English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58323/91877 (63%)
造访人次 : 14318026      在线人数 : 88
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/95854

    题名: Moving Object Detection and Tracking
    作者: Lin, Hwei-Jen;Liang, Feng-Ming;Wang, Chun-Wei;Yang, Fu-Wen
    贡献者: 淡江大學資訊工程學系
    关键词: Detection;Tracking;Gaussian mixture model (GMM);Particle filter (PF);Sequential K means algorithm;Expectation maximization (EM)
    日期: 2008-11
    上传时间: 2014-02-13
    出版者: 臺北縣淡水鎮 : 淡江大學
    摘要: For object detection and tracking, we use amodified version of Gaussian Mixture Models(GMMs) to construct background, which is thensubtracted from the image to obtain the foregroundwhere the moving objects locate. We then performsome operations, including shadow removal, edgedetection, and connected component analysis, tolocalize each moving object in the foreground. As soon as an object is detected it is then trackedin the following frames by the use of Particle Filters(PF). PF is effective but the dimension of its statespace is high so as the tracked objects tend to beshifting. To reduce this problem we modify theparticle filtering by carrying out tracking over theforeground portion instead of the whole image. Withthe use of the modified versions of GMMs and PFs,our system was proved to have high accuracy rate ofdetection/tracking and satisfactory time efficiency.
    關聯: 第十三屆人工智慧與應用研討會論文集=The 13th conference on artificial intelligence and applications, pp.809-813
    显示于类别:[資訊工程學系暨研究所] 會議論文


    档案 描述 大小格式浏览次数
    Moving Object Detection and Tracking_英文摘要.docx摘要20KbMicrosoft Word99检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈