English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 53694/88316 (61%)
造訪人次 : 10274193      線上人數 : 248
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/95854

    題名: Moving Object Detection and Tracking
    作者: Lin, Hwei-Jen;Liang, Feng-Ming;Wang, Chun-Wei;Yang, Fu-Wen
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Detection;Tracking;Gaussian mixture model (GMM);Particle filter (PF);Sequential K means algorithm;Expectation maximization (EM)
    日期: 2008-11
    上傳時間: 2014-02-13
    出版者: 臺北縣淡水鎮 : 淡江大學
    摘要: For object detection and tracking, we use amodified version of Gaussian Mixture Models(GMMs) to construct background, which is thensubtracted from the image to obtain the foregroundwhere the moving objects locate. We then performsome operations, including shadow removal, edgedetection, and connected component analysis, tolocalize each moving object in the foreground. As soon as an object is detected it is then trackedin the following frames by the use of Particle Filters(PF). PF is effective but the dimension of its statespace is high so as the tracked objects tend to beshifting. To reduce this problem we modify theparticle filtering by carrying out tracking over theforeground portion instead of the whole image. Withthe use of the modified versions of GMMs and PFs,our system was proved to have high accuracy rate ofdetection/tracking and satisfactory time efficiency.
    關聯: 第十三屆人工智慧與應用研討會論文集=The 13th conference on artificial intelligence and applications, pp.809-813
    顯示於類別:[資訊工程學系暨研究所] 會議論文


    檔案 描述 大小格式瀏覽次數
    Moving Object Detection and Tracking_英文摘要.docx摘要20KbMicrosoft Word85檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋