English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49633/84879 (58%)
Visitors : 7697709      Online Users : 72
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/94584


    Title: 應用希爾伯特-黃轉換法與極速學習機於逕流量及颱風降雨之預測研究
    Other Titles: Prediction of monthly discharge and typhoon rainfall based on Hilbert-Huang transform and ELM
    Authors: 王僑宏;Wang, Chiao-Hung
    Contributors: 淡江大學水資源及環境工程學系碩士班
    黃富國;Huang, Fu-Kuo
    Keywords: 逕流量;颱風降雨;經驗模態分解;極速學習機;ARIMA模式;Discharge;Typhoon Rainfall;Empirical mode decomposition;Extreme Learning Machine;ARIMA Model
    Date: 2013
    Issue Date: 2014-01-23 14:47:39 (UTC+8)
    Abstract: 台灣地區山高坡陡,河道源短流急,水資源蓄積不易﹔加上空間與時間上分布不均勻,以及全球氣候變遷影響,時有缺水情形發生。因此亟需一個準確性較佳之預測模式來有效調配水資源。本研究以(季節性)自回歸積分移動平均模式(ARIMA、SARIMA)、希爾伯特-黃轉換(HHT)中之經驗模態分解(EMD)方法,以及類神經網路中的極速學習機(ELM)等各模式組合而成多種複合預測模式,並採用大漢溪流域石門水庫上游之月流量,以及荖濃溪流域在莫拉克(Morakot)颱風與賀伯(Herb)颱風之降雨為例,分別進行長時間尺度之逕流量,與短時間尺度之颱風時雨量之預測準確性的探討及分析,作為水資源預測模式採擇之參考。
    研究結果顯示,在長時間尺度之逕流量方面,ELM模式的預測分析效果較佳,而HHT_ELM模式相較於ELM模式,整體而言雖然預測效果稍差,但在資料點值較大之區段,預測的結果則較ELM模式為佳;在短時間尺度之颱風時雨量方面,則依降雨資料的序列特性,預測效果以ELM模式和HHT_extension模式較佳。
    Water is essential to life, but the water resource of Taiwan is limited and hard to retain for most of the rivers run from high mountains in short and steep courses. In addition, the temporal and spatial distribution of rainfall is very uneven. How to allocate the water resources rationally becomes an important issue and a better prediction method with a higher accuracy is necessary in response to global climate change.
    In this study, several hybrid prediction models are employed based on autoregressive-integrated-moving average (ARIMA、SARIMA), empirical mode decomposition(EMD) of Hilbert-Huang transform (HHT), and extreme learning machine(ELM). Two case studies are presented according to the data of the upstream monthly riverflow of Shihmen Reservoir in Tahan River Basin and the rainfall of Laonong River Basin during typhoon Morakot and Herb. It is shown that for long-time scale discharge, ELM model has the better performance of prediction. However, HHT_ELM is superior to ELM at the section of the larger data values. On the other hand, for short-time scale rainfall of typhoon, ELM and HHT_extension models behave well in view of sequence characteristics of rainfall.
    Appears in Collections:[水資源及環境工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML82View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback