English  |  正體中文  |  简体中文  |  Items with full text/Total items : 56826/90592 (63%)
Visitors : 12125757      Online Users : 111
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/94572

    Title: 循環伏安法應用於電化學氧化降解反應機制探討
    Other Titles: Electrochemical oxidation mechanism study with cyclic voltammetry
    Authors: 陳威任;Chen, Wei-Jen
    Contributors: 淡江大學水資源及環境工程學系碩士班
    Keywords: 電化學;電解質;次級氧化劑;循環伏安法;electrochemical;Electrolyte;secondary oxidant;cyclic voltammetry
    Date: 2013
    Issue Date: 2014-01-23 14:46:58 (UTC+8)
    Abstract: 本研究為了證實電氧化三途徑中,次級氧化劑會於電化學氧化程序中生成並提高有機物的降解效率,利用循伏安法(cyclic voltammetry , CV),分析在不同pH值條件下以硫酸鈉、氯化鈉作為輔助電解質時,四環素於工作電極周圍所發生的電化學反應。藉由循環伏安圖所得之峰值電流與掃描速率平方根之間的關係,了解工作電極周圍所發生的反應為擴散控制或是化學反應控制,用以判定是否有次級氧化劑產生。
    This research attempts to confirm the formation of secondary oxidant during an electrochemical oxidation as well as its function of improving the degradation efficiency of the targeted organic, which was initially proposed in the three-pathway theory of electrochemical- oxidation. Cyclic voltammetry (CV) is utilized hereby to analyze the electrochemical reactions of Tetracycline (TC) happened adjacent to the working electrode in different pH environment when using Na2SO4 and NaCl as auxiliary electrolytes, respectively. In a cyclic voltammogram, the relationship between the current peak (Ip) and the square root of scan rate (V^(1/2)) could be used to determine whether the reactions happened around working electrode are diffusion controlled or chemical reaction controlled; in other words, to detect the production of secondary oxidant.
    The CV analysis indicated a non-linear relationship between Ip and V^(1/2) when NaCl was used as the auxiliary electrolyte. As a result, there was some chemical reactions occurred near the working electrode, whichwould most possibly be the oxidation of TC by hypochlorite which was converted from the Cl-. Theoretically speaking, Na2SO4 should not generate any oxidant during the electro-oxidation; however, a linear relationship still could not be built between Ip and V^(1/2) when Na2SO4 served as the electroylte. The possible scenario is that other secondary oxidants may form during the electro-oxidation including, but not limited to, hydrogen peroxide, ozone and hydroxyl radical, all of which might trigger the oxidation of TC.
    Appears in Collections:[Graduate Institute & Department of Water Resources and Environmental Engineering] Thesis

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback