English  |  正體中文  |  简体中文  |  Items with full text/Total items : 56829/90534 (63%)
Visitors : 12274947      Online Users : 68
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/94524

    Title: 應用於雲端運算系統預測MapReduce排程機制之研究
    Other Titles: MapReduce cloud computing system applied to predict scheduling mechanism
    Authors: 鍾弘哲;Chung, Hung-Che
    Contributors: 淡江大學電機工程學系碩士在職專班
    李維聰;Lee, Wei-Tsong
    Keywords: 雲端;MapReduce;DSRF
    Date: 2013
    Issue Date: 2014-01-23 14:44:19 (UTC+8)
    Abstract: 在眾多雲端技術中,MapReduce是Google在雲端技術上所提供出來使用在許多高運算、高儲存量的資料上的一個處理機制。MapReduce所提供的Map和Reduce兩個function,可以讓使用者輕易的將待處理的大量資料自動的完成。因此再藉由Hadoop依據 MapReduce這個架構將概念變成實際的產物,就可以方便使用者來使用。
    在先前的文獻研究中,有許多是針對改善MapReduce效率這部份的研究,其中有針對於Reduce function的演算法提出了Dynamic Switch of Reduce Function (DSRF)Algorithm的改善方案,因此減少了Reduce function的閒置時間,但此排程機制會因為系統的負載數量增加到一定數量以上的時候,因為切換的頻率過多,反而造成系統效能的降低,甚至無法達到原本Hadoop MapReduce所提供出來的效能品質。本論文研究提出透過一個斜率公式的計算來提供預測系統效能最大工作負載量的方法,因此可以提前增加伺服器的數量,藉此避免系統因負載過多後造成效率的降低。
    Among the many cloud technologies, MapReduce is provided by Google that is technically out of use in many high computing, high data storage capacity on a handling mechanism in the cloud system. MapReduce provided Map and Reduce two function, allows the user to easily handle large amounts of data will be done automatically. So then based on Hadoop MapReduce by this architecture will become the actual concept of the product, the user can easily use.
    Currently Hadoop applications are still used in the vast majority of low complexity and high density computing procedures such as search (Sort), statistics and so on.
    In previous studies in the literature, many of which are aimed at improving the efficiency of this part of MapReduce. Reduce function for which the algorithm proposed in a Dynamic Switch of Reduce Function (DSRF) Algorithm improvement plan, thus reducing the Reduce function of idle time. However, this scheduling mechanism because the system load increased to more than a certain amount of time. Because excessive switching frequency, but cause system performance degradation. Can not even reach out Hadoop MapReduce provide quality performance. This thesis put forward by a slope formula calculation to predict system performance to provide maximum working load approach. So you can increase the number of servers in advance, thereby avoiding excessive system due to the load, resulting in reduced efficiency.
    Appears in Collections:[電機工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback