English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52048/87179 (60%)
Visitors : 8870609      Online Users : 239
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/94479

    Title: 四氧化三鐵奈米流體應用於迴路式虹吸熱管之熱性能
    Other Titles: Thermal performance of a loop thermosyphon with Fe3O4 based nanofluid
    Authors: 吳子揚;Wu, Tzu-Yang
    Contributors: 淡江大學機械與機電工程學系碩士班
    康尚文;Kang, Shung-Wen
    Keywords: 迴路式虹吸熱管;奈米流體;啟動;Loop Thermosyphon;Nanofluid;Start-up
    Date: 2013
    Issue Date: 2014-01-23 14:41:30 (UTC+8)
    Abstract: 本研究為了分析不同工作流體的迴路式虹吸熱管啟動熱性能,使用了純水與四氧化三鐵奈米流體作為工作流體,其充填率為20%,初始壓力為41.7 Torr,奈米流體濃度分別為0.1 wt%和1.0 wt%;冷卻水溫度為25℃,流量為0.18 L/min;加熱端輸入功率分別為15 W、25 W、50 W、100 W、150 W。實驗中量測其汽相流道溫度分佈,以分析虹吸熱管於啟動時之熱特性,並藉由汽相流道溫度與加熱表面溫度之溫差計算熱阻性能表現。
    初步實驗結果指出,在15 W低功率加熱時,濃度0.1 wt%奈米流體的啟動時間與純水的啟動時間相比減少約1200秒(20分鐘)。啟動時奈米流體與純水的表面溫度分別為31.9℃、53.0℃;而使用濃度1.0 wt%則增加起動時間約1500秒(25分鐘),啟動時的表面溫度亦提升至68.3℃明顯高於純水之表面溫度。而熱阻值在25 W時0.1 wt%為最低,超過50 W後1.0 wt%熱阻值為最低。
    An experimental study is carried out to analyze the thermal performance of start-up of loop thermosyphon. The loop thermosyphon is filled with pure water and Fe3O4 based nanofluid with filling ratio of 20%, and the initial pressure is 41.7 Torr. The concentrations of nanofluid are 0.1 wt% and 1.0 wt%. The cooling water temperature is 25℃ with flow rate of 0.18 L/min, and the input power is 15W, 25W, 50W, 100W and 150W respectively. The thermal resistance is calculated by the temperature difference between vapor channel and heating surface.
    The preliminary experimental results show that the start-up time of 0.1 wt% nanofluid is less than that of pure water approximate 1200 seconds (20 minutes). The surface temperature of nanofluid and pure water at start-up is 31.9℃ and 53.0℃ respectively. However, adding 1.0 wt% nanofluid will increase the start-up time approximate 1500 seconds (25 minutes) and rise the surface temperature to 68.3℃ which is higher than that of pure water. The thermal resistance of 0.1 wt% nanofluid is lowest when input power is 25 W, and the thermal resistance of 1.0 wt% nanofluid is lowest when input power is over 50 W.
    Appears in Collections:[機械與機電工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback