English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52333/87441 (60%)
Visitors : 9101776      Online Users : 337
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/94475

    Title: 多孔均溫板升降溫循環之模擬分析
    Other Titles: Simulation of heating and cooling cycle in multi-well heat spreader
    Authors: 張宇勝;Chang, Yu-Sheng
    Contributors: 淡江大學機械與機電工程學系碩士班
    康尚文;Kang, Shung-Wen
    Keywords: PCR循環;蒸汽腔體;均溫性;升降溫速率;PCR;Vapor chamber;Temperature Uniformity;Heating and Cooling Rate
    Date: 2013
    Issue Date: 2014-01-23 14:41:12 (UTC+8)
    Abstract: 在生物科技上進行基因複製時,有一反應方法稱聚合酶連鎖反應,其複製溫床為一多孔均溫板,本文利用CFD數值模擬軟體在自然對流條件下,針對不同材質的多孔均溫板從常溫25℃升溫至95℃,接著降至55℃再升溫至72℃完成單一循環,從中進行均溫性及升、降溫速率之分析。
    In this study, Polymerase Chain Reaction (PCR) heating and cooling cycle of multi-well vapor chamber (VC) heat spreader are simulated and analyzed by CFD software at natural convection condition. PCR cycle consists denaturing at 95 °C, annealing at 55 °C and extension at 72 °C. Thermoelectric coolers (TEC) are used as heating and cooling elements. Applying six TEC units on heat spreader, temperature uniformity, heating and cooling rate are studied.
    Model size of the heat spreader is 112×75×17.2mm, and its structure is consisted of upper plate and lower plate. The upper plate is 13.2mm thick, and has 173 holes with a diameter of 5mm and a depth of 10mm for each. The lower plate is rectangular with a thickness of 4mm. The heat spreaders are made of four main materials: silver, copper, aluminum and vapor chamber. Temperature uniformity is assessed by comparing maximum temperature differences of heat spreaders.
    The simulation results showed that the vapor chamber has better temperature uniformity than other materials because it has higher heat capacity, faster heating rate and higher coefficient of heat conduction. An asymmetric single source heating mode is also developed in the paper.
    Appears in Collections:[機械與機電工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback