English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49433/84388 (59%)
Visitors : 7443753      Online Users : 67
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/94464

    Title: 使用RGB-D感測器實現機器人同時定位、建圖與移動中建立場景
    Other Titles: Robot simultaneous localization, mapping and structure from motion using a RGB-D sensor
    Authors: 楊仕謙;Yang, Shih-Chien
    Contributors: 淡江大學機械與機電工程學系碩士班
    王銀添;Wang, Yin-Tien
    Keywords: RGB-D感測器;同時定位與建圖;場景重建;雲端運算;RGB-D Sensor;SLAM;SfM;Cloud Computing
    Date: 2013
    Issue Date: 2014-01-23 14:40:39 (UTC+8)
    Abstract: 本論文使用微軟Kinect之RGB-D感測器,發展機器人同時定位與建圖演算法。研究分為四個階段:第一階段校準Kinect RGB-D感測器,包括RGB攝影機的內部參數校準,以及RGB鏡頭與深度鏡頭的歪斜校準。基於RGB-D感測器的同時定位與建圖之演算法在第二階段被建立與實測。第三階段將移動中建立場景的功能整合到同時定位與建圖任務中,以便建立環境模型。第四階段規劃系統的運算速度之改善程序。利用雲端運算的概念,將運算系統分為影像處理與狀態估測兩個運算程序。將影像處理程序保留在移動感測系統端,而狀態估測程序交由雲端運算伺服器進行處理。實測結果顯示使用本論文規劃的雲端運算程序,可以加快15%的運算速度。
    This thesis presents an algorithm of robot simultaneous localization and mapping (SLAM) using a RGB-D sensor. This research consists of four stages: first, the Kinect RGB-D sensor is calibrated including the intrinsic parameters of RGB camera as well as the alignment of the RGB sensor and the depth sensor. The RGB-D SLAM is developed and implemented in indoor environments at the second stage. Third, the task of structure from motion (SFM) is integrated with the RGB-D SLAM to construct the environment model. Computational speed is improved at the last stage. The concept cloud computing is applied to the SLAM system by dividing the system into two procedures including image processing and state estimation. The procedure of image processing is remained at the mobile sensory system, while the state estimation is implemented by a cloud computing server. Experimental results show that the computational speed is increased 15% with the cloud computing.
    Appears in Collections:[機械與機電工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback