English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51296/86402 (59%)
造訪人次 : 8166627      線上人數 : 82
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/94445


    題名: 以樣本為基礎之超解析技術
    其他題名: Example-based super resolution technique
    作者: 鐘文德;Chung, Wen-Te
    貢獻者: 淡江大學資訊工程學系碩士班
    林慧珍
    關鍵詞: 超解析;鄰居內嵌法;super-resolution;neighbor embedding;PSNR;SSIM
    日期: 2013
    上傳時間: 2014-01-23 14:39:19 (UTC+8)
    摘要: 本論文針對Chang et al. 所提之基於鄰居內嵌法的超解析演算法,提出了一個改進的版本。取代Chang et al.採用歐式距離尋找K個最接近之鄰居之方法,我們定義一個相似度Similarity,來尋找K個最相似之鄰居。相似度定義內含有兩區塊內導數的標準差,因而能找出更適當的鄰居。除此,我們也改進線性組合係數的取法,進而有效地改進整個超解析之結果。
    In this paper, we propose an improved version of the neighbor-based super-resolution algorithm proposed by Chang et al.. Different from Chang’s method that uses the Euclidean distance to find the K most nearest neighbors of a low-resolution patch, we define a similarity function and use it to find the K most similar neighbors of a low-resolution patch. In addition, we use a set of different weights for taking a linear combination of the high-resolution patches corresponding to the selected K most nearest neighbors. Although the set of the weights used by Chang minimizes the error they defined, the reconstructed high-resolution images by our method have better PSNR and SSIM than those constructed by Chang’s method.
    顯示於類別:[資訊工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML76檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋