淡江大學機構典藏:Item 987654321/94378
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62819/95882 (66%)
Visitors : 4008812      Online Users : 792
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/94378


    Title: 史特靈引擎之模擬與設計
    Other Titles: Simulation and design of a Stirling engine
    Authors: 陳宗成;Chen, Zong-Cheng
    Contributors: 淡江大學化學工程與材料工程學系碩士班
    張煖
    Keywords: 史特靈引擎;節點模式;有限差分理論;再生器;曲柄滑件機構;Stirling engine;Nodal model;Finite difference theory;Regenerator;Slider-crank mechanism
    Date: 2013
    Issue Date: 2014-01-23 14:31:13 (UTC+8)
    Abstract: 本論文提出一個以柴油引擎為基礎的alpha型空氣史特靈引擎之基本設計,引擎之熱源來自太陽能集光碟之輻射熱,冷端則使用冷卻水移除熱量,引擎內部設計使用具鰭片之平板構成通道的加熱器、由平板構成通道的冷卻器、以及由篩網與篩網間通道構成的再生器。本研究建立了引擎之三階模式,並與滑動結構曲柄的動力模式連結。引擎內部模式針對加熱器、再生器、冷卻器與冷、熱汽缸求解各節點之動量、質量與能量守恆方程式。
    基本個案之分析顯示引擎操作於0.58-1.17 MPa,最大壓差約為0.1 MPa,工作流體溫度介於290-1200 K,再生器內部金屬溫度呈線性分佈,且效能達82.6%。引擎對外輸出功率為0.6 kW,熱效率為12.5%。
    本論文分析了六個變更設計方案,包括調整冷卻器與再熱器之尺寸、調整冷卻水之溫度與流量,以及調整工作流體之質量,結果顯示縮小冷卻器可產生最大改善效果,可使引擎對外作功提高為0.8 kW,熱效率可達14.29%。
    In this study, a basic design is proposed for an alpha-type hot air Stirling engine developed from a diesel engine. The engine is designed to be heated by the solar radiation from a concentrated solar collector and cooled by cooling water. The gas flow channels in the heater and cooler are constructed by finned and non-finned parallel metal plates, respectively. The regenerator design uses parallel wire screens.
    A third order model for the Stirling engine and a kinematic model for the slider- crank structure are developed and the two models are interconnected to simulate the operation of the whole Stirling engine. The Stirling engine model solves the mass, momentum and energy conservation equations for each control volume or node of the heater, cooler, regenerator and the hot and cold cylinders.

    The simulation of the base design case reveals the cyclic operating conditions of the working gas and the solid temperatures. For the gas, the pressure ranged 0.58-1.17 MPa, the maximum pressure difference in the engine is about 0.1 MPa and the temperature ranged 290-1200 K. For the metal in the regenerator, the temperature distribution is linear and the effectiveness of the regenerator is 82.6%. The power output from the engine is 0.6 kW and the thermal efficiency is 12.5%.

    In this study, six modified design cases are analyzed, including the adjustment of cooler size, heater size, cooling water temperature, cooling water flow rate and mass of working gas. The simulation results indicate that reducing the size of cooler provides the maximum improvement. The power output and the thermal efficiency can be raised to 0.8 kW and 14.29%., respectively.
    Appears in Collections:[Graduate Institute & Department of Chemical and Materials Engineering] Thesis

    Files in This Item:

    File SizeFormat
    index.html0KbHTML242View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback