English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51931/87076 (60%)
Visitors : 8486567      Online Users : 101
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/94252

    Title: 線上拍賣詐騙行為之時序分析
    Other Titles: Temporal analysis on the behavior of online auction frauderster
    Authors: 莊秉諺;Jhuang, Bing-Yan
    Contributors: 淡江大學資訊管理學系碩士班
    Keywords: 詐騙偵測;資料探勘;線上拍賣;電子商務;Fraud Detection;data mining;Online Auction;Electronic Commerce
    Date: 2013
    Issue Date: 2014-01-23 14:13:33 (UTC+8)
    Abstract: 近年來,線上拍賣的蓬勃發展有目共睹。線上拍賣交易兼具便利性與隱蔽性,且不受時間與空間的限制,對於交易量的提升有極大的幫助。然而,面對如此蓬勃的交易平台,許多詐騙者開始混雜其中,謀取不法利益。詐騙的方式不但多樣化,且經常隨著時間、環境改變,讓人難以防備。為了提供更安全的交易環境,本論文以行為分析為基礎,發展了一套線上拍賣詐騙早期預警方法。首先,我們針對詐騙者及正常者的交易記錄進行時序切割,再對其特徵值向量進行分群,以歸納出典型的交易者狀態。而後,針對資料集中所有的交易歷史進行狀態變遷切割,以產生與時序行為相關的分類樹偵測模型。此外,我們也利用狀態切割後的資料集,製作狀態標籤字串,並產生循序樣本庫,供使用者比對、監控可疑帳號。根據上述方法,本研究實作了一套簡單的線上拍賣交易輔助系統,讓使用者能在交易前觀察、分析交易對象的行為。為了驗證提出方法之有效性,本研究使用拍賣網站實際交易資料進行實驗。結果顯示本研究提出之方法確實有助於提升詐騙偵測之早期預警能力,並提升線上拍賣的交易安全。
    In recent years, the rapid growth of online auctions were seen by everyone. The convenience, concealment and not constraints by time and space, is very helpful to raise the trading volume. However, many fraudersters start to obtain illegal benefits when facing such a vigorous trading platform. The ways of fraud are not only diverse but also changing by time and environment, difficult to avoid. In order to provide a more secure trading environment, our research development a online auction fraud early detection methods based on the analysis of behavior. First, we focus on segmentation of transaction history of fraudersters and normal users by trading events, and then proceed cluster analysis to conclude typical trader state. Second, in order to create the temporal behavior associated with the classification model we segment the transaction history by trader''s state. Besides, we user the dataset that segment by trader''s state to produce the state label string, and generate sequential pattern base to help the users monitor and compare the suspicious accounts. According to the methods above, our research implements a simple online auction trading decision support system. So the users can observe and analyze the behavior of account before trading. Last, to verify the effectiveness of our proposed method, we use actual transaction history on auction site to proceed experiments. The results show that the proposed method actually helps improve the early detection of auction fraud and promote the safety of online auction trading.
    Appears in Collections:[資訊管理學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback