English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49521/84657 (58%)
造訪人次 : 7598965      線上人數 : 87
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/94215


    題名: 資料複雜度指標在資料探勘分類方法之重要性
    其他題名: Importance of the data complexity indices on classification methods in data mining
    作者: 王詩詠;Wang, Shih Yung
    貢獻者: 淡江大學統計學系碩士班
    陳景祥
    關鍵詞: 資料複雜度;資料探勘;因素分析;分類器;分類正確率;data complexity;data mining;Factor Analysis;classifiers;classification correct rate
    日期: 2013
    上傳時間: 2014-01-23 14:10:27 (UTC+8)
    摘要: 資料探勘中的分類技術經常被使用於處理各種分類問題,如何從眾多的分類技術中選擇合適的方法進行分析研究即成為一個重要的課題。以往大多數的學者對於分類器性能的評估,通常著重於比較分類器的預測正確率或模型訓練的速度等等。然而,在實務上,不同的分類問題皆有其獨特的資料結構,因此可能影響著分類器的表現。本研究使用了十五個資料複雜度指標(data complexity index)以量化分類問題的資料特徵,並對於此十五個資料複雜度指標進行因素分析,探索指標之間的重複性、相關性,將選出的因素當成此十五種資料複雜度指標的綜合指標。
    本文考慮了分類正確率的比例來評估一個分類器可否有效區分不同類別資料的能力。本研究的目的即是探索資料複雜度指標之間的相關性,並觀察資料特性的複雜程度對於各種分類技術的影響,研究結果也顯示,資料複雜度確實對於分類器的表現有所影響。本研究希望可以有效地提供資訊,使研究者面對一分類資料時,從資料複雜度指標值以及因素值可以預先推估可能的分類結果,也使研究者經由資料複雜度指標值或因素值,進而選擇對於欲分類的資料最適當之分類器。
    Classification techniques in data mining are often used to deal with a variety of classification problems. Choosing suitable methods for analysis from many classification techniques becomes an important issue. For the performance evaluations of the classifiers, researchers used to compare them on several datasets in terms of classification accuracy or training time, and so on. In practice, however, different classification problems has their unique data complexities which might affect the accuracies of the classifiers. Therefore, we adopt fifteen data complexity indices to quantify the data characteristics and use correct classification rate to observe the influence of these indices on seven commonly used classification techniques. We also use factor analysis to explore the correlation among these indices. The results show that different data characteristics indeed have impacts on classification performance. According to our studies, for classification problems, researchers can calculate the data complexity indices or factor values suggested in this paper to estimate the classification difficulties, and also choose the most appropriate classification method on their study.
    顯示於類別:[統計學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML89檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋