English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52047/87178 (60%)
Visitors : 8713869      Online Users : 259
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/94201

    Title: 以多重代理人為基礎之輕軌列車運行調度模擬模式研究
    Other Titles: Multi-agent based simulation model for light rail train operations
    Authors: 江品瑩;Chiang, Pin-Ying
    Contributors: 淡江大學運輸管理學系碩士班
    Keywords: 輕軌運輸系統;多重代理人;優先號誌;Light Rail Transit System;Multi-Agent System;Signal Priority
    Date: 2013
    Issue Date: 2014-01-23 14:08:09 (UTC+8)
    Abstract: 輕軌運輸系統相較於其他軌道運輸系統而言,具有造價成本低、施工期短、路權選用彈性高之特性,其運量亦可達中運量水準,因此已紛紛成為我國各縣市政府推動捷運建設的另一替選方案。目前國內尚無輕軌運輸系統的實際營運經驗,多數文獻偏重於平面輕軌優先號誌課題之探討。因此本研究之模擬模式,除考量平面交叉路口特性之外,亦考量不同路權之影響,探討延誤產生時,如何因應延滯情境而啟動營運策略,維持服務品質。
    Comparing with other rail transit systems, LRT (Light Rail Transit) has become a better alternative to construct MRT in Taiwan because of its advantages such as low cost, short period of construction, flexibility of ROW (Right of Way) and similar capacity with a medium-capacity transit system. So far there is no LRT in operation in Taiwan and most of research studies are full of discussions surrounding the signal priority for LRT at intersections. Therefore, the proposed simulation model in this study aims at providing better LRT operation strategies to ensure service quality in case of delay occurrences for scenarios with signal priority conditions and different types of ROW.
    According to system functions and objects to be served, four types of agent including trains, stations, intersections and regions are classified based on multi-agent system. The functions are used to control train movement, determine waiting time at stations, give signal priority and implement operation strategies with concerned agents. The proposed LRT technical system architecture consists of wheel-rail rolling stock , GPS-based on board equipment, communication network among train, control canter and track-side facilities. Moving Automatic-blocking System (MAS) is also assumed as the train control system. Stations are classified into general stations and transfer stations. An absolute priority-based signal strategy will be used in this study, while partial signal priority strategy is only used in scenario analysis. Two types of operation strategy are recommended: one is to speed up to reduce running time and the other is to shorten headway.
    Tamhai LRT Lines are taken as a case study. Two lines and two types of ROW are chosen in the simulation scenarios. Variables of scenario analysis include delay time at stations, signal priority strategies and thresholds of train dispatching. According to the results of simulations, total system delay has positive relationship with delay time at stations and thresholds of train dispatching if the operation strategy to speed up is used. However, total system delay has negative relationship with delay time at stations if the operation strategy to shorten headway is used. As a whole, total system delay has positive relationship with delay time at stations, thresholds of train dispatching and density of headway that can be shown in most of results of scenario analysis.
    Appears in Collections:[運輸管理學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback