English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51296/86402 (59%)
Visitors : 8171783      Online Users : 87
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/94102


    Title: 應用直覺模糊多目標規劃於廢PC回收清除處理與補貼費率
    Other Titles: Applying intuitionistic fuzzy multi-objective programming to waste PC recycling fees formulation
    Authors: 許雅茹;Hsu, Ya-Ju
    Contributors: 淡江大學管理科學學系碩士班
    時序時;Shih, Hsu-Shih
    Keywords: 直覺模糊多目標規劃;回收清除處理費費率;回收清除處理補貼費率;模糊迴歸;Intuitionistic Fuzzy Multi-objective;Recycling and treatment fee;Recycling Subsidy Fee;Fuzzy Regression
    Date: 2013
    Issue Date: 2014-01-23 14:00:52 (UTC+8)
    Abstract: 隨著資訊類產品不斷推陳出新,產生大量電子廢棄物待處理,資源回收重要性與日俱增。我國於民國八十七年成立資源回收管理基金管理委員會推動資源回收各項業務,依汙染者付費觀念向製造商、進口商徵收回收清除處理費費率補貼給回收商、處理廠,期望減少廢棄物產生並提升回收成效,讓資源永續利用。
    本研究利用直覺模糊多目標規劃模型探討台灣廢電腦回收清除處理費費率制訂,以符合現況資源回收管理基金管理委員會立場考量,訂定以下目標:第一個目標為最大化回收率、第二個目標為最小化回收清除處理費費率,期許以最少資源獲得最大成效。回收率估計部分導入模糊迴歸觀念,解決回收率非以單一數值型式存在,減少估計與實際情況間誤差,提升預測準確度。
    直覺模糊多目標規劃模型,除原先歸屬度觀念外,更導入由決策者自行訂定決策的非歸屬度觀念,讓模型解答更具完整性。本研究利用直覺模糊觀念求解回收清除處理費率與回收清除處理補貼費率,分析結果發現提升台灣廢電腦回收率,回收清除處理補貼費率為關鍵因素並證實現行回收清除處理費費率是適宜的;其次,回收清除處理補貼費率與回收率呈一正相關;最後,回收基金中的信託基金比例較現行比例高、非營業基金比例較現行比例低,顯示回收基金運作更具效率。
    As new information products are constantly innovated, a large number of electronic wastes are to be processed which cause the importance of recycling. Republic of China established Recycling Fund Management Board to promote the recycling business, and it depends on polluter-pays principle to levy the recycling and treatment fee subsidizing the recycling treatment plants for waste reduction.
    This study applies intuitionistic fuzzy multi-objective to Taiwan’s waste PC recycling and treatment fee formulation. In terms of Recycling Fund Management Board, we set up the following goals: Maximize the recycling ratio and Minimize the recycling and treatment fee to expect best benefits. This study introduces the fuzzy regression to recycling ratio for error reduction.
    In intuitionistic fuzzy multi-objective model, the concept of non-membership function adding the accuracy is a new idea apart from the concept of membership. This study finds three results as follows: First, the recycling subsidy fee is a key factor to raise recycling ratio and the current recycling and treatment fee is appropriate. Second, there is a positive correlation between the recycling subsidy fee and the recycling ratio. Finally, the mutual fund ratio is higher than the current and the nonoperation fund is lower than the current to confirm the operation efficiency.
    Appears in Collections:[管理科學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML190View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback