淡江大學機構典藏:Item 987654321/94045
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8088060      在线人数 : 11732
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/94045


    题名: 頻率移動平均卡方統計量
    其它题名: Moving average frequency chi-square statistics
    作者: 蕭任嫻;Hsiao, Jen-Hsien
    贡献者: 淡江大學中等學校教師在職進修數學教學碩士學位班
    伍志祥
    关键词: 頻率移動平均卡方統計量;適合度檢定;moving average frequency chi-square statistics;Goodness-of-fit test;overlapping cells
    日期: 2013
    上传时间: 2014-01-23 13:49:36 (UTC+8)
    摘要: 給定一組連續型分布的隨機樣本,傳統的卡方適合度檢定會因分組起始點選取的不同,導致不同的檢定結果,Wu 和Deng(2010)提出移動平均卡方檢定統計量,來改善個問題。在模擬研究時,發現在對立假設的某一分布下,相鄰樣本數的檢定力會產生不小差異,這表示卡方適合度檢定對樣本數敏感。
    本論文提出頻率移動平均卡方統計量(moving average frequency chi-square statis- tics),是一般化Wu 和Deng(2010)的方法。首先,將[0,1]切割成m個區間,並計算每一區間擁有的樣本頻率,再取相鄰的l個區間的樣本頻率值,計算l階頻率移動平均值,再以此l階移動平均值為基礎,建立卡方統計量,並稱此為頻率移動平均卡方統計量(MAFCS)。我們可以藉由U統計量的理論,證明MAFCS的漸進分布會趨近於有限個自由度1的卡方變數的線性組合。利用模擬數據分析可知,MAFCS可改善檢定力對樣本數的敏感,另外對於震盪頻率較高的分布函數,MAFCS可提供比尼曼平滑檢定與Anderson Darling檢定更高的檢定力。
    Given a set of observations from a continuous distribution, consider the problem of testing whether the sample has been drawn from a population with a specified probability density based on grouping of data. The chi-square test would be very sensitive to the choice of anchor (cell origin) and lead to different test results of power, between adjacent sample sizes, such not as a reference to each other. Therefore, in this presentation, it is the idea of moving average frequency that gives rise to generalize the averaged of shifted chi-squared test, proposed by Wu and Deng(2010). Computing moving average frequency values and use these values to construct chi-square statistics. Call the proposed test statistics moving average frequency chi-square statistics (MAFCS). By the theory of U-statistics, we prove that the proposed MAFCS is asymptotically distributed as a finite linear combination of chi-square variables of degree 1. The simulated power comparisons show that, MAFCS can improve the pro- blem of reference the results between adjacent sample sizes and lead to better gains than Neyman Smooth tests and Anderson-Darling tests in power.
    显示于类别:[應用數學與數據科學學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML150检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈