English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 50123/85142 (59%)
造訪人次 : 7907139      線上人數 : 74
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/94044

    題名: Morse theory to Reeb's theorem and its generalization
    其他題名: Reeb定理上的Morse理論及其推廣
    作者: 李容瑄;Lee, Jung-Hsuan
    貢獻者: 淡江大學數學學系碩士班
    余成義;Yu, Cherng-Yih
    關鍵詞: Morse引理;Morse定理;Reeb定理;Morse lemma;Morse Theorem;Reeb's Therem
    日期: 2013
    上傳時間: 2014-01-23 13:49:32 (UTC+8)
    摘要: 本文先介紹可微流型之定理及各種基本性質,也初略介紹具Riemann測度之可微流型。
    In this thesis, we want to use Morse Theorem to prove Reeb''s Theorem. Before showing the proof of these theorems, we need to review some basic properties of a differentiable manifold M with a differentiable structure. In general, if we define some functions from M (or its subspace) to real value, the difference between manifold and coordinate space should be considered. Every point we choose must send to a coordinate subspace first. So defining a coordinate system is helpful to deal with any functions on manifold M.
    The main result we review is to prove Reeb''s Theorem using Morse Lemma and Morse Theorem. Here we use a surgery lemma to prove disjoint union of two spaces, matched along their common boundary.
    We also show how to construct a homotopy equivalence between manifold M and a n-sphere, for all dimension n is larger or equal to 1.
    顯示於類別:[數學學系暨研究所] 學位論文


    檔案 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋