English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51510/86705 (59%)
Visitors : 8269576      Online Users : 93
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/94025


    Title: 具有隨機效應及測量誤差之邏輯斯迴歸模型的參數估計方法
    Other Titles: Estimation of the logistic regression model with measurement errors and random effects
    Authors: 林承翰;Lin, Cherng-Hann
    Contributors: 淡江大學數學學系碩士班
    黃逸輝;Huang, Yih-Huei
    Keywords: 測量誤差;隨機效應;邏輯斯模型;條件分數法;measurement error;Random effect;Logistic Model;Conditional score
    Date: 2013
    Issue Date: 2014-01-23 13:48:32 (UTC+8)
    Abstract: 在過去文獻中很少討論在廣義線性模式中同時有測量誤差和隨機效用,主要是因為將隨機效用積分後的分配已不是廣義線性模式,使得傳統上的條件分數法或是校正分數法難以應用。本文主要探討邏輯斯迴歸在有測量誤差和隨機效用時的模型中,使用部分條件分數估計方法,並與 Naive 及迴歸校正法兩者作比較。
    There are not many literatures discuss the statistical inference when the measurement error and random effect exist in the generalized linear model. The main reason is that the distribution after integrating the random effect is no longer a generalized linear model, hence the conventional conditional score or corrected score are difficult in application. This paper discussed the estimation method when measurement error and random effect coexist in the logistic regression model, the estimation was done by a partially conditional score. We compare the efficient of the methods of Naive and regression calibration with the proposed method by simulation studies.
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML127View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback