English  |  正體中文  |  简体中文  |  Items with full text/Total items : 50122/85141 (59%)
Visitors : 7883751      Online Users : 58
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/94024


    Title: 以SEM方法分析精神病學敏感議題資料時採用資料插補法的必要性及適宜性
    Other Titles: Necessity and appropriateness of applying data imputation in analyzing sensitive psychiatry data by SEM
    Authors: 許芳瑋;Hsu, Fang-Wei
    Contributors: 淡江大學數學學系碩士班
    張玉坤
    Keywords: 遺漏值;最大期望法;結構方程式;Missing data;Expectation maximization;Structural Equation Modeling
    Date: 2013
    Issue Date: 2014-01-23 13:48:20 (UTC+8)
    Abstract: 精神病學之研究資料除了遺漏值問題外,整組資料實屬於多測量多因果的問題。若以傳統的廣義線性模式針對各項測量值分別進行分析,雖能簡化分析結果的解讀,但容易產生結果不一致現象。若能以結構方程式來建構彼此間整體的因果關係,就可有效避免此種結果不一致的現象發生。但傳統結構方程式的使用,除了對整體資料有多變量常態的要求外,更重要的是資料必須是獨立且不得有遺漏值。雖然統計軟體已陸陸續續納入最大期望法的功能,但其適用性(或差異性)卻未呈現。有鑑於此,本研究將針對遺漏值議題,以精神病學之實際研究資料依遺漏值不同嚴重度來進行最大期望法後,再以結構方程式分析並將所獲結果進行比較,進而比較最大期望法的適用性(或差異性)。
    Besides the missing data problem, the entire psychiatry data usually is multiple indicators and multiple causes (MIMIC). Using generalized linear models (GLM) to analyze the results for each indicator, the interpretation of the results can be simplified but could end up with inconsistent conclusions. Structural equation modeling (SEM) is an appropriate method to solve this MIMIC problem and avoid the potential inconsistent results. However, SEM require the data to be independently multiple normally distributed and, in addition, no missing data. Although the packages provide EM method, the appropriateness of the analytic results has not been presented. Accordingly, in this study, we are going to compare the appropriateness of using EM methods to various severities of missing data in psychiatry studies based on the results obtained from SEM.
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML73View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback