English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52047/87178 (60%)
Visitors : 8713693      Online Users : 213
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/93972

    Title: Pd(II)金屬催化下8-methylquinoline的氟化反應之理論探討
    Other Titles: Pd(II)-catalyzed fluorination of 8-methylquinoline : a DFT study
    Authors: 王子豪;Wang, Tzu-Hao
    Contributors: 淡江大學化學學系碩士班
    王伯昌;Wang, Bo-Cheng
    Keywords: 催化;模擬;氟化反應;DFT;Pd(OAc)2;B3LYP;fluorination
    Date: 2013
    Issue Date: 2014-01-23 13:44:52 (UTC+8)
    Abstract: 本論文主要為探討以Pd(II)進行金屬催化8-methylquinoline的氟化反應之理論計算研究,所模擬的反應參考一篇的實驗論文,將其路徑分為三階段,每一個階段皆有結構變化、能量圖與NBO圖電荷分析,計算方法選擇為DFT的計算函數b3lyp,搭配基底函數lanl2dz。
    第一階段進行Pd(OAc)2的氧化加成(Oxidative addition)反應,其中包含碳-氫鍵活化(C-H activation)反應,本論文計算模擬得知兩種可能路徑,考慮其金屬配位因素,選擇合理的路徑做後續的模擬與分析。
    第三階段為還原脫去(reduction eliminative)反應,氟透過還原脫去反應轉移至碳,最後與Pd鍵結之兩個OAc,重新配位生成Pd(OAc)2,而脫去反應物,完成整個反應的模擬。
    This thesis is focus on the reaction mechanism of palladium-catalyzed fluorination of 8-methylquinoline. In order to figure out the mechanism and restrictions of the fluorination reaction, we refer a published experimental paper, which divided the pathway into three steps. Each step will have the structural analysis, the NBO analysis and the energy diagram analysis. Besides, geometry optimization was carried out with the DFT method by using B3LYP functional and lanl2dz
    In step 1, we have the Oxidative addition reaction by Pd(OAc)2 which also include C-H activation reaction. We predict two possible pathways by using molecular stimulation calculation. However, there is one pathway has ligand problem so we choose anther reasonable pathway to continue step 1 simulation.
    In the step 2, the experiment uses the electrophilic fluorinating reagent (F+) to join our reaction. Since fluoride is highly electronegative so it is not easy to make it electrophilic. In our study, we found out that F+ of the fluorination reagent could leave the reagent easily in order to finish the reaction. Besides, the property of fluorinating reagent will affect the reaction difficulty.
    In the step 3, we have the reduction eliminative reaction. Under this reaction, fluoride can be transferred to the target carbon forming C-F bond. Finally, two OAc bonds of Pd will rearrange to Pd(OAc)2, which can leave the reactant and finish the full simulation pathway.
    In conclusion, the fluorinating reagent is the key factor of this reaction. Therefore, developing different kinds of fluorinating reagent can provide more efficient and better fluorination reaction.
    Appears in Collections:[化學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback